
Received February 6 2024; Accepted March 15, 2024; Online April 4, 2024

Results in Nonlinear Analysis 7 (2024) No. 2, 127–139 
https://doi.org/10.31838/rna/2024.07.02.012 
Available online at www.nonlinear-analysis.com

Stability of an unemployment model with a  
non-linear job creation
Driss El Amalki1, Abdelilah Kaddar2, Nadia Beniich3 

1,3Faculty of Sciences El Jadida, University Chouaib Doukkali, Morocco; 2ENSA-El Jadida, Chouaib Doukali University, El Jadida, Morocco.

Abstract

This study introduces a mathematical model for unemployment that incorporates nonlinear functions 
in the matching process and job creation. Derived from observed data and constraints on job creation, 
the nonlinearity enhances the model’s realism. Through a geometric approach, sufficient conditions 
are identified to ensure a successful application of global stability analysis. The dynamics of the gen-
eral system, including thresholds and global stability of the nontrivial equilibrium, are fully deter-
mined. Existence and stability of both trivial and non-trivial equilibria are rigorously proven using 
Lyapunov functions, Jacobian matrices, and the Lozinski measure. Numerical analysis illustrates the 
theoretical findings, emphasizing the global asymptotic stability of the nontrivial equilibrium under 
specific conditions.This work offers valuable insights into unemployment dynamics, bridging complex 
mathematics with practical economic models.
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1. Introduction

The modeling of unemployment dynamics is central to understanding the intricate relationships 
between unemployed individuals, employed individuals, and available vacancies. Bilinear and 
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nonlinear unemployment models, represented as ordinary differential systems, have been widely 
explored in the literature. In the linear unemployment model, described by an ordinary differential 
system, the matching process between vacancies, V, and unemployed individuals, U, is represented 
by a bilinear function kUV. The following system as an example [1]: 
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with A,b,m,a,s, and d as positive constants. While interpretable, this model may fall short in capturing 
intricate nonlinear behavior.

Contrastingly, the nonlinear unemployment model employs a differential system with a nonlinear 
matching function, m(U,V ) [2, 3], and non-linear job creation, s(U) [4]. This approach assumes a job 
creation rate proportional to U until a limit is reached. The increased flexibility of this model allows 
for a more nuanced fit to diverse and complex data but can present greater analytical challenges. El 
Fadily et al. recently analyzed an unemployment model, incorporating nonlinear matching functions 
and a linear function of new job creation (s(E) = s(E)) as shown in the following system [5]: 
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Where :  
• m(0) = 0; 
• m is continuously differentiable in the interior of R+ and monotone increasing function on R+. 

Assumptions H0 and H1 imply that as the number of unemployed individuals rises, the matching of 
vacancies correspondingly increases, and conversely, the matching ceases when there are no unem-
ployed individuals. Those assumptions are based on the works of Pissarides and Mortensen [6, 7]. 

Let C(E) denote the job creation function, where E represents the number of employed individuals. 
Traditional labor economic models often presuppose a linear relationship between variables, yet this 
assumption may oversimplify the underlying complexities of the labor market. A non-linear formu-
lation for C(E) provides a more nuanced mathematical characterization that aligns with observed 
economic phenomena.Considering, for instance, the non-linear effects that emerge in search and 
matching models as expounded by Mortensen and Pissarides [7]. In their seminal work, job creation 
and destruction are found to exhibit non-linear behaviors due to frictions and heterogeneous match-
ing between employers and job seekers. This non-linearity captures the intrinsic complexities of labor 
markets that are not reducible to linear dynamics.

Further, the concept of hysteresis, as discussed by Blanchard and Summers [8], introduces a depen-
dence on past employment levels, leading to a non-linear persistence in unemployment rates. This 
historical dependence reflects the irreversibility and memory effects inherent in labor market adjust-
ments and thus calls for a non-linear description in the form of C(E). The empirical evidence across 
different labor market structures also underscores the non-linear patterns in employment growth [9]. 
Bassanini and Duval [10] elucidate how various policies and institutions may create non-linear effects 
in employment dynamics, adding another dimension to the intricacy of the function C(E). Thus, 
non-linear modeling of C(E) provides a more accurate and comprehensive view of job creation dynam-
ics and encompasses a richer set of economic behaviors and offers a more holistic representation of 
underlying mechanisms, providing a substantial contrast with the limitations inherent in a linear 
approximation.



El Amalki D et al., Results in Nonlinear Anal. 7 (2024), 127–139 129

Following this rationale, a more generalized system was proposed, introducing a non-linear func-
tion of the matching process, as well as specific conditions on the job creation function: 
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where C is the function of new job creation satisfying specific conditions such as :  
• C(0) = 0, C'(0) > 0; 
• C is continuously differentiable in the interior of R+, increasing and concave on R+. 

For the hypothesis (H2) the initial condition C(0) = 0 reflects that no jobs can be created in the absence 
of employed individuals. The condition C'(0) > 0 is based on the economic assumption that initially, 
as employment starts to increase, job creation increases as well. This aligns with job creation dynam-
ics, particularly at the beginning of employment changes [11]. It suggests that a minimal level of 
employment is necessary to stimulate job creation, and empirical studies often find that job creation is 
initially responsive to increases in employment but may not start immediately due to various market 
frictions or delays in the hiring process [6].

As for the hypothesis (H2), the assumption that C(E) is continuously differentiable ensures that the 
model is mathematically tractable and realistic, reflecting a smooth job creation process. Its increas-
ing nature is consistent with the economic principle that higher employment generally leads to more 
job creation due to increased economic activity and demand for labor. The concavity of C(E) reflects 
diminishing returns to job creation, a widely observed phenomenon in labor economics, where each 
additional employed individual contributes less to job creation than the previous one, possibly due 
to market saturation, increased competition, or limited resources. This is supported by the works 
of [6] and the empirical observations noted in various studies, including those of [12], which illustrate 
diminishing returns in job creation across different sectors and high employment levels.

These conditions generalize the linear case, and the analysis herein explores the dynamics, thresh-
olds, and global stability of this system. The results offer valuable insights into the labor market 
dynamics and contribute to a robust mathematical understanding of unemployment. 

2. Equilibria

We consider the set, 
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The basic reproduction number R0 serves as a critical threshold determinant. It encapsulates key 
parameters of the labor market dynamics, offering a clear criterion to distinguish between differ-
ent systemic behaviors. It offers a single value that summarizes the complex interactions of various 
parameters in the model (job creation rate, matching function). [13]
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We prove the following result of the existence and uniqueness of trivial and non-trivial equilibri-
ums. Assume that hypotheses (H0) – (H3) hold. Then System 3 admits two equilibria:  

 1. a trivial equilibrium P A
0 0 0= ( )m , , .  and 

 2. a positive equilibrium P U E V R= ( ) >* * *, , , when 0 1 . 

Proof. Consider the situation where (U, E, V ) constitutes an equilibrium for system (1.2). Such an 
equilibrium can be described by the following equations: 
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If E is zero, then it follows that V is also zero, leading to U A= m  and the equilibrium point P A
0 0 0= ( )m , , .  

In the case where E is not zero, the system 3 can be reformulated as: 
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By defining the function f over the interval 0, A
aéë ùû � as 
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the task at hand is to demonstrate that the equation f(E) = 0 possesses a singular solution, thereby 
confirming the existence and uniqueness of the solution for System (2.2). With the continuous differ-
entiability of f over 0, A

aéë ùû , ensured by hypotheses H1 and H3, the derivative is given by 
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Under the condition R0 > 1, it follows that f'(0) > 0, and thus, a value E1 exists in the open interval 
0, A

a( )  for which f(E1) > 0. Additionally, the inequality f A A
a aa b( ) = - + <( ) 0  holds. Therefore, by applying  

the intermediate-value theorem, a unique value E* is obtained in the interval E A
1 , a( )  satisfying  

f(E*) = 0. For the proof of uniqueness, it must be shown that f'(E*) < 0.
Through elementary calculations and the consideration of the relationships a b+ =
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With the concavity of C and the condition C 0 0( ) = , as per hypotheses H2 and H3, it follows that 

C E E C E* * *( ) - ( ) >¢ 0
and, given the increasing nature of the function m (see hypothesis (H1)), the conclusion is reached that 
f'(E*) < 0. This finalizes the proof. 

Altering the assumption from C being concave with C 0 0( ) =  to the requirement that the ratio C E
E
( )  

is monotonically decreasing leads to the identical conclusion as presented in Theorem 1. 
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3. Global Stability of the Trivial Equilibrium

We will explore the behavior of the trivial equilibrium, P0, in system (1.2) through linearization and 
the application of a specific Lyapunov function. The subsequent theorem encapsulates the key stabil-
ity properties of P0.
 1. If R0 < 1, then P0 exhibits global asymptotic stability. 
 2. If R0 > 1, then P0 is characterized as unstable. 

Proof. We commence by defining a Lyapunov functional candidate L1(t) for a given positive constant p: 
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The time derivative of this function can be expressed as: 
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Utilizing system 3, we derive the following: 
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Considering R0 < 1, we find that dL t
dt
1 0( ) < , confirming the global asymptotic stability of P0. To  

analyze the instability of P0, we examine the Jacobian matrix J(P0) of system (1.2) at P0: 
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The eigenvalues of this matrix are given by a1 = – m < 0, a2, and a3, satisfying: 

a a R2 3 01+ = - + -( )( ) .a b d

The existence of a positive eigenvalue when R0 > 1 affirms the instability of P0. 
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4. Local Stability of the Positive Equilibrium

The ensuing analysis focuses on the local behavior of the positive equilibrium P in system 3, a critical 
component for understanding its global behavior.

Assuming conditions (H0) and (H1), and given that R0 > 1, the positive equilibrium P exhibits local 
asymptotic stability. 

Proof. Consider the Jacobian matrix J(P) for system (1.2) at equilibrium P, and define its character-
istic polynomial as: 
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Given that m is monotonically increasing and C is concave with C 0 0( ) = , it follows that a1,a2,a3 > 0  
and a1a2–a3 > 0. Hence, by Hurwitz’s criterion, P is locally asymptotically stable. 

Altering the assumption that C is concave with C 0 0( ) =  to the stipulation that C E
E
( )  is decreasing 

does not affect the conclusion of Theorem 3.  

5. Global Stability of the Positive Equilibrium

The global stability of the positive equilibrium is a significant aspect, and to understand it, we’ll first 
explore Proposition 5.1 that associates this stability with the condition R0 > 1.

The system (1.2) will be uniformly persistent if and only if R0 > 1. 

Proof. According to an earlier result, if R0 > 1, the trivial equilibrium P A
0 0 0= ( )m , ,  is not stable. 

Consequently, for R0 > 1, system (1.2) will remain uniformly persistent (refer to Theorem 4.3 in [14].
Next, we define a matrix norm associated with a given vector norm |.| in Rn (where n2N) and 

denote it also by |.|. This matrix norm is linked with the Lozinski measure as: 

m( ) lim| | ,B I hB
hh

= + -
® +0

1
 (10)

where I represents the identity matrix. 

The following theorem encapsulates our main result:
Assuming that hypotheses (H0) – (H3) are valid and that R0 > 1, the equilibrium P is globally asymp-

totically stable in T. 

Proof. To demonstrate this theorem, it’s adequate to select an appropriate vector norm in R3 and a 
matrix A(x) satisfying: 
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where m is the Lozinski ĭ measure, x U E V B A A AJ Ag= = +- -( , , ), ,[ ]1 2 1  and the vector field of (1.2) is 
mapped by x g x ( )�.

To prove this, we need to compute the Jacobian matrix J of system (1.2) at x and its second additive 
compound matrix J[2]: 
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Now, let m1  symbolize the Lozinski ĭ measure corresponding to the norm 
u v w u v w u v w, , , , ,( )Î ( ) = +{ }3

 max . The following inequality is derived by conducting a  
component-wise decomposition of the Lozinski measure m1 B( )  with respect to a pre-defined vector 
norm. The upper bounds g1 and g2  are formulated by incorporating the eigenvalues of the diagonal 
submatrices B11 and B22, as well as the absolute magnitudes of the off-diagonal elements B12  and B21: 
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Furthermore, by employing a method detailed in [15], we derive: 
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If we define h m a= { }min , ,  and since system (1.2) is uniformly persistent when R0 > 1, we can find 
c > 0 and t0 > 0 such that for t > t0: 
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for all initial conditions in K, implying: 
q2 0< .

This concludes the proof.
By modifying the assumption that C is concave with C 0 0( ) =  to the assumption that C E

E
( )  is mono-

tonically decreasing, we reach the same conclusion as in Theorem 4. 

6. Numerical Results

In this section, we provide numerical simulations to illustrate the effectiveness of our theoretical 
results. For this, we consider the following practical unemployment situations.
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6.1. Non-linear modeling of labor market dynamics in Morocco

The study’s model was used to simulate the employment dynamics in Morocco. The model parameters 
and initial conditions were chosen based on data gathered from the High Commission for Planning 
(HCP) of Morocco [16]. Below, we discuss each parameter and initial condition in detail.

The specific form C E s b E( ) = - -( )( )1 1exp  was chosen for several compelling reasons.
First, this form ensures that C(E) satisfies the natural boundary conditions C 0 0( ) =  and C'(¥) = 0, 

which are realistic in the context of labor markets. When E = 0, no new jobs can be created, satisfying 
C 0 0( ) = . As E becomes very large, the marginal impact of adding more employed individuals on job 
creation diminishes, making C'(¥) = 0 a realistic condition.

Second, this form contains an exponential term exp -( )b E1 , which introduces a natural slowing 
down effect as E increases. This captures the real-world phenomenon where initially, an increase in 
employment significantly boosts job creation, but as the number of employed individuals reaches a 
certain level, additional increases have a diminishing impact. This is in line with the law of diminish-
ing returns, a well-established concept in economics [17]. The parameter b1 controls this diminishing 
effect, making the model more realistic for scenarios where an increase in employment has a progres-
sively lesser impact on job creation.

Third, the form is analytically tractable, allowing for easier mathematical analysis and derivation 
of key performance indicators like R0. This is essential for policy simulations and forecasting, which 
are common applications of such models.

Lastly, the parameters s and b1 offer flexibility in adjusting the model to fit diverse labor market 
conditions, making it adaptable for empirical validation. The parameter s scales the overall job cre-
ation, while b1 adjusts the sensitivity of job creation to changes in employment.

Therefore, the chosen form C E s b E( ) = - -( )( )1 1exp  offers a balanced combination of realism,  
analytical convenience, and adaptability, making it a robust choice for modeling job creation dynamics  
in Morocco and potentially other labor markets.

• m = 0.39: The matching rate was set to 39%, aligning with the employment rate in Morocco.
• b = 0.02: This parameter represents the rate at which employed individuals become unemployed. 

It was set to 0.02 to reflect the transitional dynamics of the labor market.
• m = 0.01 : This rate represents how quickly unemployed individuals exit the labor force, either by 

finding a job or for other reasons like retirement.
• a = 0.01: This is the job destruction rate, indicating how quickly jobs become obsolete or are 

eliminated.
• d = 0.01: This is the rate at which job vacancies are filled or expire. The average time to fill a 

vacancy in Morocco is approximately 6 months, which justifies this value.
• s = 0.0001: This value is based on C'(0), the derivative of the job creation function at E = 0.
• s = 0.05: This is the job filling rate,
• b1 = 0.1: This parameter represents the non-linearity in the job creation function C(E) and is set 

to 0.1 to capture the complexities of the labor market. 
• U0 = 1.1: The initial unemployed population was set to 1.1 million.
• E0 = 12: The initial employed population was set to 12 million.
• V0 = 0.2: The initial number of job vacancies was set to 200,000 to reflect the labor market 

conditions.
• A = 0.3 ´ 106: The inflow rate of new job seekers into unemployment is 300,000. 
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Figure 1: Labor Dynamics in Morocco.

The calculated value of R0 is approximately 1.95, which above the threshold of 1, proving global 
asymptotic stability.

6.2. Linear vs Non-linear models: An empirical assessment

Let's compare the linear case of job creation function [5] with the nonlinear case. Both the linear and 
non-linear models were simulated to understand their predictive power in representing the labor 
market dynamics in Morocco. In the linear model, s was determinedas C'(0), the derivative of the job 
creation function C(E) at E = 0. This ensures that both the linear and non-linear models start with 
the same “initial slope,” making the comparison more insightful. It allows the linear model to approx-
imate the non-linear model at least at the initial stages, thus providing a baseline for further diver-
gence as time progresses. The choice of s as C'(0) in the linear model is a mathematical convenience 
that ensures both models start from the same initial conditions, facilitating a comparison.

Figure 2: Comparative Labor Dynamics in Morocco, between linear model (right)  
and non-linear model (left) 

Both the linear and non-linear models demonstrate a decrease in unemployment and an increase 
in employment over time. However, the non-linear model exhibits a more gradual rate of change, 
which could be a more realistic depiction of labor market dynamics. Real-world labor markets often 
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face frictions, matching inefficiencies, and other complex factors that make instantaneous transitions 
unlikely.

On the other hand, the linear model shows more abrupt changes, which, while useful for captur-
ing sudden shocks in the labor market, may not be as effective for modeling ongoing, steady-state 
behavior.

The comparative analysis reveals that while both models capture essential features of the labor 
market, the non-linear model exhibits a more realistic temporal evolution of employment and unem-
ployment rates. The steep initial increases in both employment and unemployment rates in the linear 
model seem less aligned with empirical observations, making the non-linear model a more suitable 
choice for policy analysis.

6.3. Impact of Scaling Factor s and Non-linear Term b1 on Labor Market Dynamics

To probe the sensitivity of the model to variations in the job creation function C(E), we specifically 
examine the effects of the scaling factor s and the non-linear term b1. These parameters were selected 
due to their direct influence on the rate of job creation, a critical aspect of any labor market.

The following sets of parameters are considered:

Table 1: Parameter sets used in the numerical simulations.

Set A m b m a d s b1

1 0.3 0.39 0.02 0.01 0.01 0.01 0.05 0.1 
2 0.3 0.39 0.02 0.01 0.01 0.01 0.05 0.2 
3 0.3 0.39 0.02 0.01 0.01 0.01 0.1 0.1 
4 0.3 0.39 0.02 0.01 0.01 0.01 0.1 0.2 

based on this sets of parameters, numerical simulations were made,as seen in figure 3 

Figure 3: Labor market dynamics for four sets of parameters.
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The calculated values of R0 for each set are as follows:
• Set 1: R0 = 195
• Set 2: R0 = 390 
• Set 3: R0 = 390 
• Set 4: R0 = 780 

The equilibrium points for each set are:
• Set 1: U E V, , . , . , .( ) = ( )0 48 29 52 4 74  
• Set 2: U E V, , . , . , .( ) = ( )0 46 29 54 4 99  
• Set 3: U E V, , . , . , .( ) = ( )0 24 29 76 9 49  
• Set 4: U E V, , . , . , .( ) = ( )0 23 29 77 9 97  

The results indicate a noticeable sensitivity of the labor market dynamics to changes in s and b1. 
For higher values of s and b1, the equilibrium points shift towards a larger number of vacancies, 
implying a more vibrant labor market. The R0 values above 1 for all sets confirm global asymptotic 
stability, suggesting that the system will converge to these equilibrium points for the different initial 
conditions.

7. Conclusion

The mathematical model presented in this study for analyzing unemployment dynamics introduces 
non-linear functions that describe the matching process and job creation. The primary achievements 
of this work can be summarized as follows:

Generalized model with Non-linear functions: The inclusion of non-linear functions for the 
matching process and job creation rate offers a more nuanced representation of the unemployment 
system. The chosen forms for C(E) and m(U) as non-linear are grounded in empirical data and 
governmental impacts on job creation, distinguishing this model from traditional bilinear forms.

Existence and uniqueness of equilibriums: Conditions were derived that yield both triv-
ial and non-trivial equilibriums. The parameters of the system were expressed in a manner that 
ensures the unique existence of these equilibriums.

Global asymptotic stability: Through the application of geometric approach methods, the 
global asymptotic stability of the non-trivial equilibrium was established. Such stability means 
the system will converge to a stable state over time, regardless of initial conditions. This finding 
has been empirically reinforced through numerical simulations under various parameter settings, 
solidifying its practical relevance. This is invaluable for predicting long-term trends and for the 
crafting of policies that aim for sustainable employment levels. Within the mathematical frame-
work, the basic reproduction number R0 > 1 emerges not merely as a threshold condition but as 
a key determinant of global asymptotic stability. Our results delineate two distinct behavioral 
regimes separated by this number. Specifically, when R0 < 1, the trivial equilibrium point P0  is 
globally asymptotically stable, signifying a labor market that will naturally gravitate towards this 
equilibrium even when perturbed. Conversely, when R0 > 1, this system reveals a non-trivial pos-
itive equilibrium that is also globally asymptotically stable, indicating a fundamentally different 
state of the labor market that is nonetheless equally stable in the long run. This nuanced under-
standing of R0  goes beyond its conventional interpretation as a simple bifurcation parameter. It 
allows us to predict, with mathematical certainty, the long-term behavior of labor markets under 
different conditions.

Superiority of Non-linear job creation function: Our analysis distinctly illustrates the 
advantages of incorporating a non-linear function for job creation, especially when contrasted with 
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traditional linear models. The non-linear formulation is adept at capturing the complex dynamics 
of labor markets, particularly in scenarios influenced by policy interventions or external shocks. 
This stands in marked contrast to linear models, which, while computationally simpler, often fail 
to capture the true complexity of labor markets. The validity of our non-linear approach is further 
substantiated by numerical simulations conducted using real-world parameter values, thereby 
reinforcing the theoretical insights and underlining the model’s empirical relevance.

Relevance and future directions: The model’s flexibility and alignment with observed data 
make it applicable to diverse scenarios. The mathematical rigor and generalization contribute to 
the understanding of unemployment dynamics and can guide future research and policymaking.
This study represents a significant step forward in the mathematical modeling of unemployment. 

By embracing non-linearity that reflect real-world complexities, it offers a comprehensive framework 
that balances theoretical soundness, practical relevance, and mathematical rigor. 
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