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Abstract

This paper shows how to estimate one of the two shape parameters of Kumaraswamy distribution
(KD) using two estimation methods. The first one is the rank set sampling (RSS) estimation method
and the second one is the Bayes estimation method. The rank set sampling was employed as a
non-Bayes estimator. In addition, Bayes estimators were used based on asymmetric loss function
(LINEX) by utilizing four kinds of informative prior one single prior (Gamma) and three double prior
(Gamma-exponential, Gamma-chi-squared, and Chi-squared-exponential). The study was conducted
of these estimators using a Monte Carlo simulation study and the shape parameter estimates were
compared depending on the mean squared error (MSE). Furthermore, simulation results indicate
that the performance of non-Bayes estimators for some cases is better than Bayes estimators, and
Bayes estimators under LINEX loss function corresponding to double informative priors (gamma—
exponential and gamma—chi-squared) are the best prior distribution for all cases and all sample
sizes. Finally, the program (MATLAB 2015) was used to get the mathematical outcomes.

Key words and phrases. Kumaraswamy distribution, Shape parameter, Rank set, LINEX, Double
priors.

1. Introduction

Kumaraswamy distribution is used in practical areas for modeling data, like medication, engi-
neering, economics, and physics and it is applicable to many natural phenomena, such as the
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height of individuals, atmospheric temperatures, daily stream flow, etc. A two shape parameters
Kumaraswamy’s distribution has been proposed by poondi Kumaraswamy (1980) [1] for bounded
lower and upper variables. In probability and statistics, Kumaraswamy’s double-bound distribution
is a group for continuous probability distributions bounded over the interval (0, 1) that differ in the
values of the positive shape parameters ¢ and ». KD utilizing various estimations are presented by
many authors. Al-Noor and Ibraheem (2016) [2] utilized the maximum likelihood (ML), Bayes, and
Bayes empirical estimation methods to obtain an estimate of the unknown shape parameter for KD
within complete samples and take the other shape parameter is known. Sultana and et al (2018) [3]
Estimated and examined parameters for the KD using hybrid censoring systems. Bantan and et al
(2019) [4] putted truncated-inverted KD, and Ghosh (2019) [5] found weighted KD for both multivar-
iate and bivariate variables. Abraheem and et al (2020) [6] used ML and Bayes techniques to obtain
an estimate for the shape parameter of the KD under asymmetric loss function based on three kinds
for informative priors (one double and two single), also find the approximate value of this parame-
ter using methods expansion. Mohamoud and et al (2022) [7] used non-Bayes and Bayes estimation
methods to estimate the unknown shape parameter, as well as the approximate methods (Newton
and False Position) to find the approximate value of this parameter. The ML is gotten as a non-Bayes
estimator, and the Bayes estimator based on asymmetric loss function (NLINEX and De-groot) based
on four informative priors (one single and three double).

This work presents two methods of estimations for one of the shape parameters ¢ of the KD
depending on complete data and assuming the other parameter v is known. These methods are the
RSS estimator as the traditional method and the Bayes method which is derived by using infor-
mative priors provided by (gamma-exponential, gamma-chi-square, chi-square-exponential, and
gamma) based on the asymmetric loss function LINEX.

2. Some Properties for KD

The function for probability density (pdf) and the function for cumulative distribution (cdf) for KD
are obtained from [8] as follows:

ftp,0) = i (1L =)t 0<t<1 M

Ftppo)=1-Q10-t);  0<i<1 @)

where the shape parameters ¢,v > 0.
The respective reliability function R(z) and failure rate function A(f) for the KD are defined as
follows:

R@)=1-F(t;p,0) =1 -1t); 0<t<l1 3)

Figure 1: The probability density function for KD with different value of shape parameters.
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Figure 2: The cumulative distribution function for KD with different value of shape parameters.
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The methodology of the research can be illustrated by the following flowchart.
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Figure 3: Flowchart for the methodology of the research.

Gamma-exponential Gamma-chi-squared || Chi-squared-exponential Gamma
distribution distribution distribution distribution
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One of the important topics in statistic is estimator parameter. It has taken a large place in statis-
tical studies. One of the most important ways to estimate the parameters is the rank set sampling

(RSS) method [9] [10].
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The probability density function of KD which obtained by increasing ordering random sampling

(t(l), Loy +os t(n)) 1s:
n. i— n—i
1) = m[F(t<i))] = Fta)"" f () 5)
Let k= ﬁ with substitution equation (1) and equation (2) in equation (5), gets:
i—-1I(n-1)!
it ) = Rt )71 (1=t )1 oty (1=t )
S0

it o = ooty [L=(1=t )] Lty o0 ®)

The complete data likelihood function Lf;%s((o,ul t) for a given order sample (¢ ) can be

expressed by:

@ Loy o b

- - 1 n n—i+1)-
L?;%S((P,U|£):k”(pnunll:ItFi)1ll:[|:1_(1_té))¢:| g[l—t(‘;)]p( 1)-1 (7)

The natural log-likelihood function is:

lip =In(Lig (p011))
That is

0%y =nIn(k) +n In(p) + nln(v) + (v - 1)Zn:1n(t(i)) + Zn:(i ~Dln (1 B (1 1 )4"]

i1 i1
> (p(n-i+1)-1)In(1-¢,) ®)
i-1
Derived equation (8) with respect to unknown parameter ¢ and setting it equal to zero yields:

ol _n GOt mii-t) & e
v 9 5 1_(1"55'))‘/) +;(n L+1)ln(1 t(l.))_o, )

The Rank set sampling estimators denoted by gb;ggs, it can be obtained by solving the equation (9),

but equation (9) is nonlinear equation. Therefore, iterative technique (Newton-Raphson method) is

applied to solve this equation and find @rs°.

4. Standard Bayes Estimation Method

Bayes estimators are based on the posterior pdf of the unknown parameter given both data and some
prior density for this parameter.
The standard Bayes estimator method consists of the following steps:

*+ Given the random variables ¢, £,, ..., ¢ , find a conditional density function for the parameter ¢:

L(g|)g(p)
| Lolpeprde

Py(plt)= (10)
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The result of joining the likelihood function L((p| t) and density function for the prior distribu-
tion P (¢) is referred to as the posterior density function (PDF) for the parameter ¢ [11].
+ Using loss function L(¢,¢) that is defined to be real function satisfies the following conditions:

i. L(p, ¢) =0 for all estimator ¢ and for all parameter ¢.
i. L(p, ) =0 for ¢ = ¢.

* In this paper, considering the linear exponential loss function (LINEX) as an asymmetric loss
function, it can be described as follows [12]:

L (9, p)=e —¢A-1,¢,#0 (11)

where A= ¢ — ¢ and ¢ is an estimate of the parameter ¢.
¢ Find the risk function for the parameter ¢:

Risk (9) = By [L(,0)] = [L(p,0) P (p| 1) dp (12)

The value of ¢ that minimizes the loss function is called the standard Bayesian estimate. The Bayes
estimator for ¢ can is acquired depending on (LINEX) signified by ¢, as follows:

E, (e |t)
= 13
EP(6_01¢|£)} ( )

A 1

=—1In
Pcr. 2¢,

The first prior-distribution for the shape parameter ¢ is gamma-distribution of hyper-parameters
a and p for pdf introduced in [13]:

P\(p) = d,G\(9) (14)

where

d, = P and G,(p) =¢“ e, ¢>0, a,f>0

r(a)
The first PDF for the parameter ¢ for the KD is:

q)n+a—le—¢(ﬁ—T) (ﬁ _ T)n+a
r (n + a)

P(plt)= (15)

where T = Zh’l(l —t)

i-1
The second prior-distribution is the exponential-distribution together of the hyper-parameter ¢ for
the pdf defined as:

P (p) =d,G,(p) (16)
where
d,=Cand G,(¢) =e?% ¢>0,c>0
The second PDF for the shape parameter ¢ of the KD is:

—(/7(C—T) (C _ T)n+1
I'(n+1)

P02(¢|£)=(p ¢ (17)
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The third prior-distribution is the double prior distribution (gamma and exponential) of the parame-
ter ¢ is obtaining by combining equation (14) and equation (16) as follows [14]:

P.(p) x G,(9)G,(p)

or
P.(p) =k e??9, >0, a,p,¢c>0 (18)
where
g B
I'(a)

And the third PDF of ¢ for the KD depend on gamma-exponential is:

n+a-1 e—z/z(B+c—T)(B +c— T)n+a

I'(n+a) (19)

po3(¢|£) = P

From equation (19), we conclude: (¢ |t) ~ Gamma(a,, #,) where a, = (n + a), and g, = (f+ c = 1).

* The chi-squared prior distribution of ¢ together with hyper-parameter c, is defined by [11] as

the following:
P(plt)=d,G,(p) (20)
where
1 [%—1] _®
d4202— and G,(p)=¢ e 2,0>0,c,>0
22 G
2

The double prior distribution (gamma-chi-square) of ¢ can be obtained by combining equation
(14) and equation (20) as in [15] as follows:

P.(p) x G,(9)G,(p)

or

P,(p) =k2<o[“+c5_2je(”(’”;],wo,a,ﬂ, ¢,>0 21)

where

(ﬂ N 1)[0&5—1]
r (a + &2 1}
2

The PDF of the parameter ¢ for the KD based on P,(¢) for given data ¢ is:

c
(n+a+—2—2

" 2 J e—ga(B+0‘5—T) (B 05— T)(nﬂ”%’qj

(22)
F(n+a+cz—1J
2

P05(¢7|£):
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From equation (22), we conclude: (¢ |t) ~ Gamma(a,, $,) where a, = (n + a + 0.5¢,— 1) and g, =

B+05-1).
* Chi-Squared-Exponential priors of the parameter ¢ can be obtained by combining equation
(16) and equation (20) as follows:

P () « G,(9)G,(9)

or

P,(p) = ksq)[czz_l]e_w(HzJ, »>0,c,c,>0 (23)

where

) ¢ #0577 (c+0.5- T)(M%J
r [n + CZJ
2

From equation (24), we conclude: (¢|¢) ~ Gammal(a,, f,) where a, = (n + 0.5¢,) and g, = (c +

0.5-1).

(24)

5. Bayes Estimators under (LINEX) Based Loss Function

In this section, Bayes estimators are obtained of the parameter ¢ of the KD corresponding to various
posterior distributions:

+ Corresponding to P, (@)
By using equation (12) and equation (15), gets:

Ep, 11 D] = [¢* Pyy(p | 1) dep
4
© n+a71e*(ﬂ(ﬂ*T) (ﬁ _ T)n+a

= | 4% i
¢ F(n+a) do

0

_ (ﬁ_T)nJra T n+a-1 7(/1(/5’7ch1)
a7 @
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Lety=¢(f—-T —c,) then (p=¢ and de¢ dy

(B-T-c,) “(B-T-c,)

o0

J'yn+a—1e—y dy
0

(ﬂ _ T)n+a
Fn+a)f-T-c)"™

E, [(e%10)]=

But J.y'””“le_y dy=I'(n + a)
0

_ T n+a
So By lewin- P (25)
( p-T- C1)
By the same way, have:
_T n+a
Ep [(e7 ] )]= (p=1) (26)

(ﬂ—T+cl)"+a

Substituting equation (25) and equation (26) in equation (13) to find the Bayes estimators
of the parameter ¢ based on compounded LINEX loss function depend on the gamma prior
informative.

n n+a p-T+c
= 1 1 27

+ Corresponding to Py, (¢|t)
Under the gamma-exponential prior distribution, the Bayes estimator for the parameter ¢
depending on compounded LINEX loss function corresponding to FPy,(¢|¢) can be obtained by
using equation (12) and equation (19) and by the same above way, gets:

. n+a p+c-T+c
= 1 L 28
Pbcige 2¢, n{ﬂ+c—T—cl} 28)

* Corresponding to P (¢|t)
The Bayes estimator for the parameter ¢ depending on compounded LINEX loss function cor-
responding to P (¢|%) under gamma-chi-squared prior distribution can be found by using
equation (12) and equation (22) and by the same way, gets:

PBcLgeh =

n+a+0.5¢, -1 In L+05-T+c
2¢, p+05-T ¢,

(29)

+ Corresponding to P (¢ 1)
By the same way, the Bayes estimator of the parameter ¢ depending on compounded LINEX
loss function corresponding to P (¢|¢) under chi-squared-exponential prior distribution can
be found by using equation (12) and equation (24), gets:

(30)

. ~ n+0.5¢, n c+05-T+¢
PpcLene 2¢, c+0.5-T-¢



Abraheem SK, et al., Results in Nonlinear Anal. 7 (2024), 142—-155. 150

6. Simulation Study

Simulation methods are widely used in many branches of statistics. They can be used to evaluate the
behavior of models as well as for some random variables. The stages of the process can be summa-
rized as follows:

Stage 1:

* In Table 1, default values for the constants and parameters for the simulation experiments
are summed up.

Table 1: The values are used in simulation experiments.

Sample sizes n 10, 25, 50, 100
Shape parameter @ 1.5,2, 2.5
Hyper parameters a 2

B 1

c 0.5

c, 2.5
LINEX value c, 0.1
Sample Replicate Number L 1000

* In order to examine the effect of the shape parameters of the KD on the estimates, nine differ-
ent cases were taken in the following form, when v > ¢, v = ¢ and v < ¢.

Stage 2:

At this stage, generating random samples U, (i =1, 2, ..., n) are distributed according to a continuous
uniform distribution on the unit interval (0, 1). They can be made utilizing the inverse transforma-
tion technique of the cdf as follows:

U=F@) (31)
t=F'(U) (32)
Now, substituting equation (2) in equation (31), yields:
U=Ft)=1-(1-1)%0<t<1; @,v>0
Simplify this equation, gets:
t=[1-Q-U)"]"; i=1,..,n (33)

Stage 3:
The MSE was used to compare how well different estimation techniques perform in finding an esti-
mate for the shape parameter ¢.

L
MSE@) =79, ~¢) (34)

where
L : Sample replicated number.
¢ : The estimate for the ¢ at j* repeat.

7. Discussion of the Simulation Study

The simulation results of MSE related to the parameter ¢ for the KD distribution using non-Bayes
(RSS) and Bayes methods are shown in Table 2 with different cases.
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Table 2: Values MSE for RSS and Bayes estimators of shape parameter ¢ for KD.

n RSS Method @II&?’S Prior Bayes Method ?BcL
Case (I): p=1.5,v=1
10 0.1760 Gamma-Exponential 0.1849
Gamma-Chi-squared 0.1988
Chi-squared-Exponential 0.2229
Gamma 0.2842
Best Prior Gamma-Exponential
25 0.0724 Gamma-Exponential 0.0835
Gamma-Chi-squared 0.0862
Chi-squared-Exponential 0.0893
Gamma 0.0996
Best Prior Gamma-Exponential
50 0.0358 Gamma-Exponential 0.0433
Gamma-Chi-squared 0.0442
Chi-squared-Exponential 0.0448
Gamma 0.0477
Best Prior Gamma-Exponential
100 0.0189 Gamma-Exponential 0.0202
Gamma-Chi-squared 0.0204
Chi-squared-Exponential 0.0205
Gamma 0.0211
Best Prior Gamma-Exponential
Case (II): p=1.5,v=1.5
10 0.1663 Gamma-Exponential 0.1606
Gamma-Chi-squared 0.1721
Chi-squared-Exponential 0.1897
Gamma 0.2409
Best Prior Gamma-Exponential
25 0.0739 Gamma-Exponential 0.0882
Gamma-Chi-squared 0.0913
Chi-squared-Exponential 0.0946
Gamma 0.1060
Best Prior Gamma-Exponential
50 0.0376 Gamma-Exponential 0.0441
Gamma-Chi-squared 0.0448
Chi-squared-Exponential 0.0456
Gamma 0.0479
Best Prior Gamma-Exponential
100 0.0194 Gamma-Exponential 0.0218
Gamma-Chi-squared 0.0221
Chi-squared-Exponential 0.0222
Gamma 0.0230
Best Prior Gamma-Exponential
Case (IID: p=1.5,v=2
10 0.17426 Gamma-Exponential 0.17429
Gamma-Chi-squared 0.1865
Chi-squared-Exponential 0.2086
Gamma 0.2629
Best Prior Gamma-Exponential
25 0.0725 Gamma-Exponential 0.0866
Gamma-Chi-squared 0.0895
Chi-squared-Exponential 0.0929
Gamma 0.1040
Best Prior Gamma-Exponential

(continues)
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Table 2: Continued

n RSS Method @II&?’S Prior Bayes Method ?BcL
50 0.0353 Gamma-Exponential 0.0422
Gamma-Chi-squared 0.0429
Chi-squared-Exponential 0.0436
Gamma 0.0462
Best Prior Gamma-Exponential
100 0.0193 Gamma-Exponential 0.0220
Gamma-Chi-squared 0.0221
Chi-squared-Exponential 0.0223
Gamma 0.0229
Best Prior Gamma-Exponential
Case (IV):p=2,v=1
10 0.1865 Gamma-Exponential 0.2456
Gamma-Chi-squared 0.2560
Chi-squared-Exponential 0.3161
Gamma 0.3876
Best Prior Gamma-Exponential
25 0.0891 Gamma-Exponential 0.1302
Gamma-Chi-squared 0.1323
Chi-squared-Exponential 0.1442
Gamma 0.1561
Best Prior Gamma-Exponential
50 0.0591 Gamma-Exponential 0.0710
Gamma-Chi-squared 0.0715
Chi-squared-Exponential 0.0745
Gamma 0.0772
Best Prior Gamma-Exponential
100 0.0391 Gamma-Exponential 0.0359
Gamma-Chi-squared 0.0362
Chi-squared-Exponential 0.0369
Gamma 0.0380

Best Prior

Gamma-Exponential

Case (V):9p=2,0=2
10 0.1679 Gamma-Exponential
Gamma-Chi-squared
Chi-squared-Exponential
Gamma
Best Prior
25 0.0918 Gamma-Exponential
Gamma-Chi-squared
Chi-squared-Exponential
Gamma
Best Prior
50 0.0563 Gamma-Exponential
Gamma-Chi-squared
Chi-squared-Exponential
Gamma
Best Prior
100 0.0401 Gamma-Exponential
Gamma-Chi-squared
Chi-squared-Exponential
Gamma
Best Prior

0.2276

0.2358

0.2903

0.3528
Gamma-Exponential

0.1420

0.1448

0.1581

0.1724
Gamma-Exponential

0.0686

0.0691

0.0720

0.0749
Gamma-Exponential

0.0349

0.0350

0.0357

0.0365
Gamma-Exponential

(continues)
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Table 2: Continued

n RSS Method $%35  Prior

Bayes Method PBCL

Case (VI): p=2,0v=2.5

10 0.1772 Gamma-Exponential 0.2304
Gamma-Chi-squared 0.2382
Chi-squared-Exponential 0.2924
Gamma 0.3532
Best Prior Gamma-Exponential
25 0.0942 Gamma-Exponential 0.1382
Gamma-Chi-squared 0.1403
Chi-squared-Exponential 0.1528
Gamma 0.1647
Best Prior Gamma-Exponential
50 0.0567 Gamma-Exponential 0.0725
Gamma-Chi-squared 0.0732
Chi-squared-Exponential 0.0763
Gamma 0.0799
Best Prior Gamma-Exponential
100 0.0407 Gamma-Exponential 0.0383
Gamma-Chi-squared 0.0385
Chi-squared-Exponential 0.0393
Gamma 0.0403
Best Prior Gamma-Exponential
Case (VII): p=2.5,v=1
10 0.2457 Gamma-Exponential 0.3242
Gamma-Chi-squared 0.3215
Chi-squared-Exponential 0.4094
Gamma 0.4665
Best Prior Gamma-Chi-squared
25 0.1859 Gamma-Exponential 0.1839
Gamma-Chi-squared 0.1847
Chi-squared-Exponential 0.2060
Gamma 0.2202
Best Prior Gamma-Exponential
50 0.1680 Gamma-Exponential 0.1095
Gamma-Chi-squared 0.1096
Chi-squared-Exponential 0.1157
Gamma 0.1188
Best Prior Gamma-Exponential
100 0.1541 Gamma-Exponential 0.05745
Gamma-Chi-squared 0.05749
Chi-squared-Exponential 0.0591
Gamma 0.0599

Best Prior

Gamma-Exponential

Case (VIII): ¢ =2.5,v=2.5
10 0.2603 Gamma-Exponential
Gamma-Chi-squared
Chi-squared-Exponential
Gamma
Best Prior
25 0.1902 Gamma-Exponential
Gamma-Chi-squared
Chi-squared-Exponential
Gamma
Best Prior

0.3226

0.3190

0.4022

0.4553
Gamma-Chi-squared

0.1850

0.1853

0.2062

0.2185
Gamma-Exponential

(continues)
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Table 2: Continued

n RSS Method @II&S)S Prior Bayes Method ?BcL
50 0.1683 Gamma-Exponential 0.1077
Gamma-Chi-squared 0.1078
Chi-squared-Exponential 0.1138
Gamma 0.1171
Best Prior Gamma-Exponential
100 0.1499 Gamma-Exponential 0.0549
Gamma-Chi-squared 0.0551
Chi-squared-Exponential 0.0567
Gamma 0.0578
Best Prior Gamma-Exponential
Case (IX): p =2.5,v=3
10 0.2659 Gamma-Exponential 0.3332
Gamma-Chi-squared 0.3286
Chi-squared-Exponential 0.4130
Gamma 0.4619
Best Prior Gamma-Chi-squared
25 0.1834 Gamma-Exponential 0.1694
Gamma-Chi-squared 0.1690
Chi-squared-Exponential 0.1874
Gamma 0.1971
Best Prior Gamma-Exponential
50 0.1751 Gamma-Exponential 0.11756
Gamma-Chi-squared 0.11761
Chi-squared-Exponential 0.1240
Gamma 0.1270
Best Prior Gamma-Exponential
100 0.1515 Gamma-Exponential 0.0563
Gamma-Chi-squared 0.0565
Chi-squared-Exponential 0.0582
Gamma 0.0594
Best Prior Gamma-Exponential

=

Table 2 includes nine various cases with MSE values for the shape parameter ¢ estimator
using RSS and Bayes estimation methods. The following is clear from it:

For all cases, when n=10, RSS estimators is best from Bayes estimators.

For all cases, when (n = 10, 25, 50, 100), the best prior for Bayes estimators depending on
LINEX loss function is (gamma-exponential) except case(VII) to case(IX) with (n = 10) is
(gamma-chi-squared).

From case (I) to case (III), MSE values for the RSS estimators are less than Bayes estimators
for all sample size.

From case (IV) to case (VI), when (n = 100), MSE values for the Bayes estimators are less
than RSS estimators.

From case (VII) to case (IX), when (n = 50, 100) the MSE values associated with every one
of the priors for the Bayes estimators as well as when (n = 25) the MSE values associated
with the two priors for the Bayes estimators relying upon LINEX loss function (gamma-—
chi-squared and gamma—exponential) are less than RSS estimators.
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8. Conclusion

The outcomes obtained in the current work are summed up depending on simulation results of esti-
mating the shape parameter ¢ of the KD distribution with the assumption the other parameter v is
known based on complete data, the most conclusions can be drawn as follows:

* The MSE values of double prior distribution depending on LINEX loss function are less than
single prior distribution for all cases.

+ The LINEX loss function with ¢ =0.1 is the best loss function for the Bayes estimators corre-
spondent to gamma—exponential and gamma—chi-squared priors for all cases and all sample
sizes.

* For all cases when (n=10), the MSE values for the RSS estimates are less than Bayes estimates.

* When increasing the value of the shape parameter, the MSE values for the RSS and Bayes
estimates increase for all cases and all sample sizes.
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