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Abstract
The shifted Vieta-Lucas polynomial approach is taken into account for the numerical solution of 
linear and nonlinear fractional-order integro-differential equations of the Volterra type. Fractional 
derivatives are described in the Caputo sense. The suggested method reduces the complexity of these 
problems to the linear or nonlinear solution of algebraic equations. The convergence of the recom-
mended strategy is studied in detail. The computing efficiency of this approach is then illustrated 
with certain numerical examples, and a comparison with prior research is made.
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1. Introduction

The properties of derivatives and integrals of non-integer orders are explored in the area of math-
ematics known as fractional calculus (see [1]). Many of the fundamental properties of the differ-
entiation of integer order and the integration of n-fold are preserved because it is an extension of 
classical calculus. In 1823, Abel applied a derivative of order 1/2 to the integral equation solution 
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of the Tautochrone problem, which was the first application of fractional calculus (see [2, 3]). A 
number of scientific disciplines, such as economics [4], medicine [5], viscoelastic dynamics [6], solid 
mechanics [7], and fluid-dynamic traffic models [8], have also lately been linked to the discovery 
of fractional differential equations (FDEs). One of the most important and effective ways for sim-
ulating differential equations of many types is spectral methods ([9–12]). One of these methods’ 
most important qualities is its ability to produce accurate results with relatively little flaws. 

For instance, the orthogonality condition of Vieta Lucas polynomials is utilized to approxi-
mate the functions of the period [a,b]. In these techniques, which strongly rely on polynomials,  
(see [13–15]).

There are several advantages to employing Vieta-Lucas polynomials:
Vieta-Lucas polynomials exhibit a multitude of intriguing and beneficial properties. Utilizing 

Vieta-Lucas polynomials as fundamental functions yields highly precise solutions. The utilization 
of Vieta-Lucas polynomials in research contributions is comparatively limited in comparison to 
other polynomial types. By selecting the modified set of shifted Vieta-Lucas polynomials as the 
basis functions and retaining only a few terms of the modes, it becomes feasible to generate highly 
accurate approximations with reduced computational effort. Furthermore, the associated errors 
are minimal.

The structure of this study is as follows. The definitions of the fractional derivatives and shifting 
Vieta-Lucas polynomials are briefly discussed in Section 2 as well as some preliminary remarks. We 
demonstrate the numerical application of the suggested method and applications in Sections 3 and 4. 
Section 5 provides the conclusion.

2. Preliminaries and notations

2.1 Some definitions of fractional derivatives

Definition 1.
The fractional derivative of order 0 < nuleq < 1 in the Caputo sense is provided for p(η) ∈ H1(0,b) by:
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2.2 The shifting Vieta-Lucas polynomials: some concepts

In this section, we give the definitions of the shifted Vieta-Lucas polynomials (VLPs), their notations, 
and their properties [16]. The majority of our studies have concentrated on an orthogonal polynomial 
class. The recurrence relations and analytical equations of these polynomials can be used to con-
struct a family of orthogonal polynomials called Vieta-Lucas polynomials.

Vieta–Lucas Polynomials Ψj(z) of degree j ∈ ℕ0 is defined by [16]:

 Ψj(t) = 2 cos(j ψ),   ψ = arccos(0.5 z),  ψ ∈ [0, π],   –2 ≤ z ≤ 2.



Khirallah M.Q., Results in Nonlinear Anal. 7 (2024), 14–23.  16

The existence of the following recurrence relation for Ψj(z) can be easily demonstrated:

 1 2 0 1( ) ( ) ( ), 2,3, , ( ) 2, ( ) .j j jz z z z j z z z− −Ψ = Ψ − Ψ = … Ψ = Ψ =

Using VLPs and z = 4, beta – 2, a new class of orthogonal polynomials on the interval [0, 1] is pro-
duced, and it will be indicated by the symbol Φm(β), as in:

 Φj(β) = VLj(4 β – 2).

Φj(β) have the following recurrence relation:

 Φj+1(β) = (4β – 2) Φj–1(β) – Φj–2(β),   j = 2, 3, …,

where, Φ0(β) = 2, Φ1(β) = 4β – 2. Also, we find Φj(0) = 2(–1)j and Φj(1) = 2, j = 0,1,2,....
The analytical formula for Φj(β) is:
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The polynomials Φk(β) are orthogonal polynomials on [0,1] w.r.t. 
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Let Φ(β) ∈ L2[0,1], then using Φk(β), we have:
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ing into account only the first m + 1 words (1).
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It is possible to calculate cj, j = 0,1,2,..., and m from:
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2.3 Error Analysis

Lemma 1. With the weight function 
2

1
β β−

 and Φ(β) ≤ ε, the series (2) uniformly converges to the 

function Φ(β) as m → ∞ for some constant ε. Additional estimates that have been satisfied include:

1. The coefficients’ series in Equation (2) are bounded, that is
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2. The error estimate norm is subject to the following inequality 


2( [0,1]Lw -norm):
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3. If Φ(m)(β) ∈ C[0,1], the absolute error bound is as follows.
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Here, Δ = maxβ∈[0,1]Φ
(m+1)(β) and Π = max {1 – β0, β0}.

For more details on these polynomials and the convergence analysis for the approximation (2), 
see reference [17].

2.4 The Main Scheme

Therom 1. In Eq. (1), the approximate solution of the main problem is given in terms of shifted 
Vieta-Lucas polynomials. Following that, the fractional-order terms can be changed into the following 
 algebraic equations:
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3. Numerical Method

In this study, we use a different expansion to get at the FIDEs answer. Compared to the current 
approaches we have explored, the proposed expansion is either more direct, simpler, or both. We are 
interested in the numerical analysis of the following nonlinear fractional integro-differential equation:
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Here, we use the shifted Vieta-Lucas polynomials collocation method to solve the FIDE problem. To 
do this, with initial and boundary conditions (2), we calculated (1) as
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At these points, βs, s = 0, 1,..., m – α, we collocate (7).
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The roots of the shifted Vieta–Lucas Polynomials are used to find appropriate collocation locations 
Φm+1–α. We utilize the transformation to change the γ-interval [0, βs] into the Δ-interval [–1, 1] in order 
to employ the Gaussian integration formula for (8)

 
( 1).
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sβγ δ= +
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Equation (8) may be rewritten as follows for s = 0, 1, ..., m – α
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For s = 0, 1, ..., m – α and the Gaussian integration formula, we obtain
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where δq are the Vieta–Lucas Polynomials’s m + 1 zeros and wq are the appropriate weights listed 
in [18]. The above approximation is based on the exactness of the Gaussian integration formula for 
polynomials with degrees up to 2m + 1. Additionally, we can get r equations by inserting (2) in the 
boundary conditions. Equation (10), when combined with the r equations of the boundary conditions, 
gives (m + 1) of an algebraic equation system that can be solved using the Newton iteration method 
for the unknowns cn, n = 0, 1,..., m.

4. Numerical Examples

In this section we will present three examples of fractional integro - differential equation of Volterra 
type by the proposed Vieta-Lucas polynomials method.

Example 1. Consider the following fractional integro-differential equation [19]
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subject to the initial condition 

 ϕ(0)=0.  (12)

We use the provided procedure with m = 6 and arrive at an approximation of the solution as,
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We construct the following schema using Equation (10).
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where βs are roots of the shifted Vieta-Lucas polynomial polynomial and s = 0, 1, 2, 3, 4, 5. Additionally, 
δq represents the roots of the Vieta-Lucas polynomial while w(q) are the associated weights.

In view (2), the initial condition (22) can be written as 
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The set of algebraic equations with the coefficient cj are represented by equations (14 and 15, com-
bined. For finding the coefficients, we solve this algebraic equations and substitute it into equation 
(23) and then we can obtain the approximate solution of (11).

We will illustrate the numerical results through some figures. Figure 1(A) represents the com-
parison of the exact solution with the approximate solution with α = 0.8 and m = 6. While figure 1(B) 
represents the absolute error between the two solutions. In fact, here we find that the error is very 
small of the order of 10–10. But to verify further, since the exact solution in the fractional case does 
not exist, there must be a way to check the amount of error. In this case we will calculate the resid-
ual error function as follows:
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The REF in Fig. 1(C) is plotted for the same values as in Figs. 1(A) and 1(B). As a result, we were 
satisfied the accuracy of the solutions for non-integer cases. It is clear from this figure that the order 
of the REF is very small; i.e. 10–12. In [19, 20], only the numerical solutions were verified by compar-
ing them only with the exact solutions, and this is not enough, although it gives a good impression. 
In the following two examples, we will follow the same treatment, so we will only list the examples 
with illustrations.

Example 2. Consider the following fractional integro-differential equation [20]
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Figure 1. Plot of  comparison and  absolute error  between numerical solution and exact solution for example 1 with α = 0.8 
and m = 6. (C) Residual error function for the same values as in (A)–(B).
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subject to the initial condition 

 ϕ(0) = 0. 

Using the proposed approach and the value m = 6, we arrive at approximation of the solution as,
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Equation (10) provides us the following schema
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The approximate solution to the equation (17) can be found by taking the same procedures as in 
example 1.

We show in Figure 2 (A)–(B) the comparison and absolute error between numerical solution and 
exact solution for example 2 with α = 0.8, λ = 2,$ and m = 6. Also in Figure 2 (C) the residual error 
function for the same values as in Figure 2 (A)–(B).

Example 3. Consider the following fractional integro-differential equation [21]
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subject to the boundary conditions 

 ϕ(0) = 0,   ϕ(1) = 1  (22)

The exact solution in the case of α = 2 is ϕ(β) = β2

Using the proposed approach and the value m = 6, we arrive at approximation of the solution as,
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Equation (10) provides us the following schema
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The approximate solution to the equation (17) can be found by taking the same procedures as in 
example 1.

We show in Figure 3 (A)–(B) the comparison and absolute error between numerical solution and 
exact solution for example 3 with α = 0.8 and m = 6 and in Figure 3(C) the residual error function for 
the same values as in Figure 3 (A)–(B).



Khirallah M.Q., Results in Nonlinear Anal. 7 (2024), 14–23.  21

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

β

φ(
β)

0.0
0

0.2 0.4 0.6 0.8 1.0

β

2. × 10–9

1.5 × 10–9

1. × 10–9

5. × 10–9Ab
so

lu
te

 E
rro

r
0.0 0.2 0.4 0.6 0.8 1.0

β

Er
ro

r F
un

ct
io

n

2. × 10–12

1. × 10–12

0

–1. × 10–12

–2. × 10–12

(A) (B)

(C)

Figure 2. (A)–(B) Plot of  comparison and  absolute error  between numerical solution and exact solution for example 2 with 
α = 0.8, λ = 2, and m = 6. (C) Residual error function  for the same values as in (A)–(B).
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Figure 3. (A)–(B) Plot of  comparison and  absolute error  between numerical solution and exact solution for example 3 
with α = 0.8 and m = 6. (C) Residual error function for the same values as in (A)–(B).
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The results of this study are contrasted with those from another approximative analytical method 
in Figure 4. Using the method described in [22], the absolute error was determined for the three 
examples. These figures show that the error is really minor. Every time we use a larger value for m 
as well as more iterative approximations, the result can be decreased. The values are taken as shown 
in the figures 1–3, respectively.

5. Conclusions

In this article, fractional integro-differential equations were solved using the Chebyshev spectral 
method via Caputo fractional derivative. The properties of Vieta--Lucas polynomials were coupled 
with the Gaussian integration method for reducing the fractional integro-differential equations to 
algebraic equations. The resulting equations were then solved using well-known techniques like 
Newton’s. The numerical results work is completed using the Mathematica program. We recommend 
focusing on utilizing fractional space-time derivatives in our upcoming work. Furthermore, we will 
convert the fractional time derivative into a discrete equation through non-standard finite-difference 
methods. To simplify complex models into a set of solvable differential equations, we can also employ 
another special functions. (see, for example, [23–26]).
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