Results in Nonlinear Analysis 7 (2024) No. 1, 35–43 https://doi.org/10.31838/rna/2024.07.01.005 Available online at www.nonlinear-analysis.com

Fixed point theorems in generalized *b*-Menger spaces

Rachid Oubrahim¹, Rachid Naciri², Abderrahim Mbarki³

¹LANO Laboratory, Higher School of Technology, BP 473, Mohamed First University, Oujda, Morocco; ²LANO Laboratory, National School of Applied Sciences, P.O. Box 669, Mohammed First University, Oujda, Morocco. ³LANO Laboratory, National School of Applied Sciences, P.O. Box 669, Mohammed First University, Oujda, Morocco

Abstract

The purpose of this work is to define the generalized *b*-Menger spaces and prove a fixed point theorem in this new setting. As application, we establish the existence and uniqueness of a solution for Volterra type integral equation. Our results extend and generalize the existing results in literature.

Key words and phrases: b-Menger space, Cauchy sequence, Fixed point.

Mathematics Subject Classification (2010): 54A05, 54C50, 54E70

1. Introduction and preliminaries

A metric space is a fundamental concept in analysis and topology, which has been introduced by Fréchet [1].

Definition 1.1. A metric (or distance) on a nonempty set *Z* is a function $\rho : \mathbb{Z} \times \mathbb{Z} \to \mathbb{R}^+$ which satisfies the following conditions, for all $p, q, r \in \mathbb{Z}$ \$

- (1) $\rho(p, q) = 0$ if and only if p = q,
- (2) $\rho(p, q) = \rho(q, p),$
- (3) $\rho(p, q) \leq \rho(p, r) + \rho(r, q).$

The pair (Z, ρ) is called a metric space.

There is a generalization of this notion, which were obtained by various alternation of one, two or all three conditions above. For example of these generalizations we can find the notion of b-metric space introduced by Bakhtin [2] and Czerwik [3].

Email address: rchd.oubrahim@gmail.com (Rachid Oubrahim)*; rchd.naciri@gmail.com (Rachid Naciri); dr.mbarki@gmail. com (Abderrahim Mbarki)

Received October 18, 2023; Accepted November 9, 2023; Online December 4, 2023

Definition 1.2. A function $\rho: \mathbb{Z} \times \mathbb{Z} \to \mathbb{R}^+$ is called a *b*-metric on *Z* if it satisfies the following conditions, for all $p, q, r \in Z$:

- (1) $\rho(p, q) = 0$ if and only if p = q,
- (2) $\rho(p, q) = \rho(q, p),$
- (3) There exists a constant $\ell \geq 1$ such that:

 $\rho(p, q) \le \ell(\rho(p, r) + \rho(r, q)).$

The triplet (Z, ρ, ℓ) is called a *b*-metric space. Fixed point theorems in *b*-metric spaces can be found in [4, 5].

In 2017, Kamran et al. [6] introduced the notion of an extended b-metric space and proved fixed point theorems in these spaces.

Definition 1.3. Let *Z* be a non empty set and $\alpha : \mathbb{Z} \times \mathbb{Z} \to [1, \infty)$. A function $\rho : \mathbb{Z} \times \mathbb{Z} \to \mathbb{R}^+$ is called an extended *b*-metric on *Z* if for all *p*, *q*, *r* \in *Z*, we have:

- (1) $\rho(p, q) = 0$ if and only if p = q,
- (2) $\rho(p, q) = \rho(q, p),$
- (3) $\rho(p, q) \leq \alpha(p, q)(\rho(p, r) + \rho(r, q)).$

The pair (Z, ρ_a) is called an extended *b*-metric space.

Remark 1.1. By setting $\rho = \ell$ with $\ell \ge 1$, the above definition becomes the definition of a *b*-metric space.

In other hand, Menger [7] in 1942 introduced the notion of probabilistic metric spaces, as a generalization of metric spaces. Some basic results on these spaces were summarized in the book [8]. To generalize the notion of probabilistic metric, Mbarki and Oubrahim [9] defined the probabilistic *b*-metric spaces by extending the triangle inequality assertion in the definition of probabilistic metric spaces and they studied a fixed point theory in these spaces using the topoligical and geometrical properties. For more details see [10, 11, 12].

We now recall some basic definitions in the theory of *b*-Menger spaces (See [9] and [10]).

Definition 1.4. A distance distribution function is a nondecreasing function h defined on $\mathbb{R}^+ \cup \{\infty\}$ that satisfies h(0) = 0 and $h(\infty) = 1$, and is left continuous on $(0, \infty)$. The set of all distribution function will be denoted by Δ^+ and the set of all h in Δ^+ for $\lim_{t \to \infty} h(t) = 1$ by \mathcal{D}^+ .

A simple example of distribution function is the unit step function in \mathcal{D}^+

$$\epsilon(t) = \begin{cases} 0 & if \quad t \le a, \\ 1 & if \quad t > a. \end{cases}$$

The first field where triangular norms (t-norm briefly) played a major role was the theory of probabilistic metric spaces (see [13]).

Definition 1.5. A function $N : [0, 1] \times [0, 1] \rightarrow [0, 1]$ is called a *t*-norm if the following conditions are satisfied for any λ , μ , ν , $\xi \in [0, 1]$:

- (1) $N(\mu, 1) = \mu$,
- (2) $N(\mu, \nu) = N(\nu, \mu),$
- (3) $N(\mu, \nu) \ge N(\lambda, \xi)$, for $\mu \ge \lambda, \nu \ge \xi$,
- (4) $N(N(\mu, \nu), \xi) = N(\mu, N(\nu, \xi)).$

A *t*-norm N is said to be continuous if $N(\mu, \nu)$ is continuous at each point $(\mu, \nu) \in [0, 1] \times [0, 1]$. Typical continuous *t*-norms are

- (1) The minimum *t*-norm $N_M(\mu, \nu) = \min(\mu, \nu)$.
- (2) The product *t*-norm $N_p(\mu, \nu) = \mu\nu$.
- (3) The Lukasiewicz *t*-norm $N_L(\mu, \nu) = \max(\mu + \nu 1, 0)$.

Remark 1.2. We have $N \leq N_M$ for each *t*-norm *N*.

Definition 1.6. [9] A *b*-Menger space is a quadruple (Z, G, N, ℓ) where Z is a nonempty set, G is a function from $Z \times Z$ into \mathcal{D}^+ , N is a *t*-norm and the following conditions are satisfied for all $p, q, r \in Z$ and a, b > 0

(1) $G_{p,q} = \epsilon_0$ if and only if p = q,

(2)
$$G_{na}^{++} = G_{ab}^{++}$$

(3) There exists a constant $\ell \geq 1$ such that $G_{p,q}(\ell(a+b)) \geq N(G_{p,r}(a), G_{r,q}(b))$.

Mbarki and Oubrahim [9] proved that if the *t*-norm *N* is continuous, then (*Z*, *G*, *N*, ℓ) is a first countable topological space which means that the family of sets {V_p(γ): $\gamma > 0$ } is a base of neighborhoods of point $p \in Z$, where

$$V_{p}(\gamma) = \{q \in Z: G_{p,q}(\gamma) > 1 - \gamma\}.$$

Some fundamental roles of the theory of probabilistic metric spaces can be apply in controllability of probabilistic systems, analysing the complexity of algorithms and quantum particle physics (see [14, 15, 16]).

2. Generalized *b*-Menger spaces

Now, we extend the concept of Menger spaces by defining a generalized *b*-Menger spaces.

Definition 2.1. A generalized *b*-Menger space is a triplet (Z, G^a, N) where *Z* is a nonempty set, $\alpha: Z \times Z \to [1, \infty)$, *G* is a function from $Z \times Z$ into Δ^+ , *N* is a continuous *t*-norm, and the following conditions are satisfied for all $p, q, r \in Z$ and a, b > 0

(1) $G_{p,q} = \epsilon_0$ if and only if p = q,

(2)
$$G_{na} = G_{an}$$
,

(3) $G_{p,r}^{p,q}(a(p,q)(a+b)) \ge N(G_{p,r}(a),G_{r,q}(b)).$

Remark 2.1. Setting $\alpha = \ell$ with $\ell \ge 1$ then Definition 1.6 of a *b*-Menger space becomes a special case of the above definition of generalized *b*-Menger space.

Now we present an example of generalized *b*-Menger space.

Example 2.1. Let $Z = \{1, 2, 3\}$ and define $\rho : Z \times Z \to \mathbb{R}^+$ by $\rho(p, q) = (p - q)^2$. We consider the mapping $\alpha : Z \times Z \to [1, \infty)$ defined by $\alpha(p, q) = p + q + 1$. Define the mapping $G: Z \times Z \to \Delta^+$ by

$$G_{p,q}(\gamma) = \begin{cases} \frac{\gamma}{\gamma + \rho(p,q)} & \text{if } \gamma > 0, \\ 0 & \text{if } \gamma = 0. \end{cases}$$

and consider the continuous t-norm N_{M} .

We prove that (Z, G^a, N_M) is a generalized *b*-Menger space. The conditions (1) and (2) of Definition 2.1 are trivially satisfied. Now we show the assertion (3) for all $p, q \in Z$. We have

$$G_{p,q}\left(\alpha(p,q)(a+b)\right) = \frac{\alpha(p,q)(a+b)}{\alpha(p,q)(a+b) + \rho(p,q)}$$

If p = 1, q = 2, then

$$\begin{split} G_{1,2}\left(\alpha(1,2)(a+b)\right) &= \frac{\alpha(1,2)(a+b)}{\alpha(1,2)(a+b) + \rho(1,2)} = 1 - \frac{1}{4(a+b) + 1},\\ G_{1,3}(a) &= 1 - \frac{4}{a+4}, \end{split}$$

and

$$G_{3,2}(b) = 1 - \frac{1}{b+1}$$

For all a, b > 0, we have

$$\begin{split} G_{1,2}\left(\alpha(1,2)(a+b)\right) &= 1 - \frac{4}{16a + 16b + 4} \\ &> 1 - \frac{4}{16a + 4} \\ &> 1 - \frac{4}{a + 4}. \end{split}$$

Thus

$$G_{1,2}(\alpha(1, 2)(a + b)) > G_{1,3}(a).$$

By the same way we have

$$G_{1,2}(\alpha(1, 2)(a + b)) > G_{3,2}(b)$$

Therefore

$$G_{1,2}(\alpha(1, 2)(a + b)) \ge \min\{G_{1,3}(a), G_{3,2}(b)\}$$

Also we can prove that

$$\begin{split} & \mathcal{G}_{1,3}(\alpha(1,\,3)(a+b)) \geq \min\{G_{1,2}(a),\,G_{2,3}(b)\},\\ & \mathcal{G}_{2,3}(\alpha(1,\,2)(a+b)) \geq \min\{G_{2,1}(a),\,G_{1,3}(b)\}. \end{split}$$

 $\langle \alpha \rangle$

Hence for all $p, q, r \in Z$

$$G_{p,q}(\alpha(p,q)(a+b)) \ge N_M \{G_{p,r}(a), G_{r,q}(b)\}$$

Therefore (Z, G^a, N_M) is a generalized *b*-Menger space.

Lemma 2.1. Let (Z, ρ_a) be an extended *b*-metric space. Define $G: Z \times Z \to \Delta^+$ by

$$G_{p,q}(\gamma) = \epsilon_{\rho a(p,q)}(\gamma).$$

Then

- (1) (Z, G^a, N_M) is a generalized *b*-Menger space.
- (2) (Z, G^a, N_M) is complete leads (Z, ρ_a) is complete and vice versa.

PROOF.

(1) It is easy to check the conditions (1) and (2) of Definition 2.1. So, for condition (3), let $p, q, r \in$ Z, let $a, b \in [0, \infty)$.

If $\min(G_{p,r}(a), G_{r,q}(b)) = 0$, then $G_{p,q}(\alpha(p,q)(a+b)) \ge \min(Gp, r(a), G_{r,q}(b))$. Else if $\min(G_{p,r}(a), G_{r,q}(b)) = 1$, then $a > \rho(p, r)$ and $b > \rho(r, q)$. Since (Z, ρ_a) is an extended *b*-metric space, we have

$$\rho(p,q) \le \alpha(p,q)[\rho(p,r) + \rho(r,q)]$$
$$\le \alpha(p,q)(a+b).$$

Then we get $G_{p,q}(\alpha(p, q)(a + b)) = 1$. Thus

$$G_{p,q}(\alpha(p,q)(a+b)) \geq N_{\scriptscriptstyle M}(G_{p,r}(a),\,G_{r,q}(b)).$$

Then condition (3) holds. So (Z, G^a, N_M) is a generalized *b*-Menger space.

(2) We have for every $\gamma > 0$,

$$V_p(\gamma) = \{ q \in \mathbb{Z} : \rho_q(p, q) < \gamma \}.$$

So (Z, G^a , N_M) is complete if and only if (Z, ρ_a) is complete.

Let $\{z_n\}$ be a sequence in a generalized *b*-Menger space (Z, G^a, N) .

Definition 2.2.

(1) A sequence $\{z_n\}$ in Z is said to be convergent if there exists $z \in \mathbb{Z}$ such that

$$\lim_{n \to \infty} G_{z_n, z}(\gamma) = 1, \ \forall \gamma > 0$$

(2) A sequence $\{z_n\}$ in Z is said to be Cauchy sequence if

$$\lim_{n\to\infty}G_{z_n,x_{n+j}}(\gamma)=1 \ for \ all \ \gamma>0 \ and \ j>0.$$

(3) A generalized *b*-Menger space in which every Cauchy sequence is convergent is called a complete generalized *b*-Menger space.

3. Fixed point theorem in generalized b-Menger space

In the proof of our main theorem, we use the following lemma.

Lemma 3.1. Let (Z, G^a, N) be a generalized *b*-Menger with $RanG \subset D^+$ and let $\{b_n\}$ a sequence in *Z*. Suppose that there exists $\beta \in (0, 1)$ such that

$$G_{b_n,b_{n+1}}(\beta\gamma) \ge G_{b_0,b_1}\left(\frac{\gamma}{\beta^{n-1}}\right)$$
(3.1)

and suppose also that for all $n, j \in \mathcal{N}$, we have

$$\alpha(b_n,b_{n+j}) < \frac{1}{\beta}.$$

Then $\{b_n\}$ is a Cauchy sequence.

PROOF. Let $\{b_n\}$ be a sequence in *Z* satisfying (3.1). We have $\gamma = \frac{\gamma}{j} + \frac{(j-1)\gamma}{j}$ for any $j \in \mathcal{N}$ and using (3) of Definition 2.1 by successive applications we obtain

$$\begin{split} G_{b_n,b_{n+j}}(\gamma) &\geq N \Biggl(G_{b_n,b_{n+1}}\Biggl(\frac{\gamma}{j\alpha(b_n,b_{n+j})}\Biggr); G_{b_{n+1},b_{n+j}}\Biggl(\frac{(j-1)\gamma}{j\alpha(b_n,b_{n+j})}\Biggr) \Biggr) \\ &\geq N \Biggl(G_{b_n,b_{n+1}}\Biggl(\frac{t}{j\alpha(b_n,b_{n+j})}\Biggr); N\Biggl(G_{b_{n+1},b_{n+2}}\Biggl(\frac{\gamma}{\gamma\alpha(b_n,b_{n+j})\alpha(b_{n+1},b_{n+j})}\Biggr); \\ &G_{b_{n+2},b_{n+j}}\Biggl(\frac{(j-2)\gamma}{j\alpha(b_n,b_{n+j})\alpha(b_{n+1},b_{n+j})}\Biggr) \Biggr) \Biggr) \\ &= N \Biggl(N \Biggl(G_{b_n,b_{n+1}}\Biggl(\frac{\gamma}{j\alpha(b_n,b_{n+j})}\Biggr); G_{b_{n+1},b_{n+2}}\Biggl(\frac{\gamma}{j\alpha(b_n,b_{n+j})\alpha(b_{n+1},b_{n+j})}\Biggr) \Biggr) \\ &G_{b_{n+2},b_{n+j}}\Biggl(\frac{(j-2)\gamma}{j\alpha(b_n,b_{n+j})\alpha(b_{n+1},b_{n+j})}\Biggr); G_{b_{n+1},b_{n+2}}\Biggl(\frac{\gamma}{j\alpha(b_n,b_{n+j})\alpha(b_{n+1},b_{n+j})}\Biggr) \Biggr) \\ &\geq N \Biggl(N \Biggl(N \Biggl(N \Biggl(G_{b_n,b_{n+1}}\Biggl(\frac{\gamma}{j\alpha(b_n,b_{n+j})}\Biggr); G_{b_{n+1},b_{n+2}}\Biggl(\frac{\gamma}{j\alpha(b_n,b_{n+j})\alpha(b_{n+1},b_{n+j})}\Biggr) \Biggr) ; \\ &G_{b_{n+2},b_{n+3}}\Biggl(\frac{\gamma}{j\alpha(b_n,b_{n+j})\alpha(b_{n+1},b_{n+j})}\Biggr); G_{b_{n+1},b_{n+2}}\Biggl(\frac{\gamma}{j\alpha(b_n,b_{n+j})\alpha(b_{n+1},b_{n+j})}\Biggr) \Biggr) ; \\ &G_{b_{n+j-1},b_{n+j}}\Biggl(\frac{\gamma}{j\alpha(b_n,b_{n+j})\alpha(b_{n+1},b_{n+j})\dots\alpha(b_{n+2},b_{n+j})}\Biggr) \Biggr) . \end{split}$$

By (3.1) and in view of (3) of Definition 2.1 we get

$$\begin{split} G_{b_{n},b_{n+j}}(\gamma) &\geq N \Bigg(N \Bigg(N \Bigg(G_{b_{0},b_{1}} \Bigg(\frac{\gamma}{j\alpha(b_{n},b_{n+j})\beta^{n}} \Bigg); G_{b_{0},b_{1}} \Bigg(\frac{\gamma}{j\alpha(b_{n},b_{n+j})\alpha(b_{n+1},b_{n+j})\beta^{n+1}} \Bigg) \Bigg); \\ & G_{b_{0},b_{1}} \Bigg(\frac{\gamma}{j\alpha(b_{n},b_{n+j})\alpha(b_{n+1},b_{n+j})\alpha(b_{n+2},b_{n+j})\beta^{n+2}} \Bigg); ...; \\ & G_{b_{0},b_{1}} \Bigg(\frac{\gamma}{j\alpha(b_{n},b_{n+j})\alpha(b_{n+1},b_{n+j})...\alpha(b_{n+j-1},b_{n+j})\beta^{n+j-1}} \Bigg) \Bigg). \end{split}$$

Since for all $n, j \in \mathcal{N}$ we have $\alpha(b_n, b_{n+j})\beta \le 1$ with $\beta \in (0, 1)$ and letting $n \to \infty$, it follows

$$\lim_{n \to \infty} G_{b_n, b_{n+j}}(\gamma) = N(N(...(N(1;1);1)...;1) = 1.$$

So we conclude that $\{b_n\}$ is a Cauchy sequence in Z.

Theorem 3.1. Let (Z, G^a, N) be a complete generalized *b*-Menger space with $RanG \subset D^+$. Let $h : Z \to Z$ be a mapping which satisfies the condition

$$G_{hp,hq}(\beta\gamma) \ge G_{p,q}(\gamma) \quad \forall p, q \in \mathbb{Z},$$
(3.2)

where $\beta \in (0, 1)$. Also suppose that for $b_0 \in \mathbb{Z}$, and $n, j \in \mathbb{N}$, we have

$$\alpha(b_n,b_{n+j}) < \frac{1}{\beta},$$

where $b_n = h^n b_0$. Then *h* has a unique fixed point.

PROOF. **Existence** Let $b_0 \in \mathbb{Z}$ be arbitrary, and we consider the sequence $\{b_n\}$ defined by

 $b_{\scriptscriptstyle n} = h(b_{\scriptscriptstyle n-1}) = h^{\scriptscriptstyle n} b_{\scriptscriptstyle 0} \quad \text{ for each } n \in \mathbb{N}.$

Firstly, we prove that

$$G_{b_n,b_{n+1}}(\beta\gamma) \ge G_{b_0,b_1}\left(\frac{\gamma}{\beta^{n-1}}\right)$$

Let $n, \gamma > 0$, from (3.2) we have

$$\begin{split} G_{b_n,b_{n+1}}(\beta\gamma) &= G_{hb_{n-1},hb_n}(\beta\gamma) \\ &\geq G_{b_{n-1},b_n}(\gamma) \\ &\geq G_{b_{n-2},b_{n-1}}\left(\frac{\gamma}{\beta}\right) \\ &\geq G_{b_{n-3},b_{n-2}}\left(\frac{t}{\beta^2}\right) \\ &\ddots \\ &\vdots \\ &\geq G_{b_0,b_1}\left(\frac{t}{\beta^{n-1}}\right). \end{split}$$

By Lemma 3.1, the sequence $\{b_n\}$ is a Cauchy sequence in Z. Since (Z, G^a, N) is complete, there is some $b \in Z$ such that

 $b_n \to b$ as $n \to \infty$.

Now we will prove that b is a fixed point of h. Applying (3.2) and (3) of Definition 2.1 we obtain

$$\begin{split} G_{hb,b}(\gamma) &\geq N \Biggl(G_{hb,hb_n} \Biggl(\frac{\gamma}{2\alpha(hb,b)} \Biggr); G_{hb_n,b} \Biggl(\frac{\gamma}{2\alpha(hb,b)} \Biggr) \Biggr) \\ &\geq N \Biggl(G_{b,b_n} \Biggl(\frac{\gamma}{2\beta\alpha(hb,b)} \Biggr); G_{b_{n+1},b} \Biggl(\frac{\gamma}{2\alpha(hb,b)} \Biggr) \Biggr) \end{split}$$

Letting $n \to \infty$ we obtain

 $G_{hb,b}(\gamma) \ge 1.$

Which holds unless $G_{hb,b} = \epsilon_0$, so b is a fixed point of h.

Uniqueness

To prove uniqueness, assume that there exists another fixed point $r \in Z$ of h. Then, let $\gamma > 0$, from 3.2 we get

$$\begin{split} G_{b,r}(\gamma) &= G_{hb,hr}(\gamma) \\ &\geq G_{b,r}\left(\frac{\gamma}{\beta}\right) \\ &= G_{hb,hr}\left(\frac{\gamma}{\beta}\right) \\ &\geq G_{b,r}\left(\frac{\gamma}{\beta^2}\right) \geq \ldots \geq G_{b,r}\left(\frac{\gamma}{\beta^n}\right). \end{split}$$

Letting $n \to \infty$ we obtain

 $G_{b,r}(\gamma) \ge 1.$

We conclude that b = r. This completes the proof.

Remark 3.1. In the particular case $\alpha(p, q) = \ell \ge 1$ for all $p, q \in \mathbb{Z}$, we found the Theorem 4.1 in [9] if we consider $\varphi(\gamma) = \beta\gamma$.

4. Application

Let $Z = C([0, 1], \mathbb{R}$ be the set of real continuous functions defined on [0, 1]. For $f, g \in Z$, consider $\rho : Z \times Z \to \mathbb{R}^+$ and $\alpha : Z \times Z \to [1, \infty)$ defined by

$$\rho(f,g) = \max_{\gamma \in [0,1]} |f(\gamma) - g(\gamma)|^2$$

and

$$\alpha(f, g) = |f(\gamma)| + |g(\gamma)| + 2.$$

So (Z, ρ_c) is a complete extended *b*-metric space. Define $G: Z \times Z \rightarrow \Delta^+$ by

$$G_{f,g}(\gamma) = \epsilon_{\rho a}(f,g)(\gamma)$$

In view of Lemma 2.1, (Z, G^a, N_M) is a complete generalized b-Menger space.

Let $\Gamma \in \mathcal{C}([0, 1] \times [0, 1] \times \mathbb{R}, \mathbb{R})$ be an operator such that

$$\sup_{\mu,\nu\in[0,1],f\in\mathcal{C}([0,1],\mathbb{R})}|\Gamma(\mu,\nu,f(\nu))|$$

is finite and there exists K > 0 such that $\forall \mu, \nu \in [0, 1]$ and $\forall f, g \in \mathcal{C}([0, 1], \mathbb{R})$ we have

$$|\Gamma(\mu, \nu, hf(\nu)) - \Gamma(\mu, \nu, hg(\nu))| \leq \frac{K}{\sqrt{2}} |f(\nu) - g(\nu)|,$$

where $h: \mathcal{C}([0, 1], \mathbb{R}) \to \mathcal{C}([0, 1], \mathbb{R})$ is given by

$$hf(\mu) = \omega(\mu) + \int_0^{\mu} \Gamma(\mu, \nu, hf(\nu)) d\nu, \quad \omega \in \mathcal{C}([0, 1], \mathbb{R}).$$

By Theorem 5.1 in [12] we have for all $f, g \in \mathcal{C}([0, 1], \mathbb{R})$ and $\gamma > 0$

$$G_{hf,hg}(\beta\gamma) \ge G_{f,g}(\gamma),$$

where $\beta = \frac{(1 - e^{-K})^2}{2} \in (0,1)$. We conclude by Theorem 3.1 that *h* has a unique fixed point which is the

unique solution of the integral equation

$$f(\mu) = \omega(\mu) + \int_0^{\mu} \Gamma(\mu, \nu, f(\nu)) d\nu.$$

References

- [1] M. Fréchet, Sur quelques points du calcul fonctionnel. Rendic. Circ. Mat. Palermo 22 1-74 (1906).
- [2] I. A. Bakhtin, The contraction mapping principle in quasi metric spaces, Funct. Anal. Unianowsk Gos. Ped. Inst., 30 (1989), 26–37.
- [3] S. Czerwik, Contraction mappings in b-metric space, Acta Math. Inf. Univ. Ostraviensis, 1 (1993), 5-11.
- [4] H. Hamed Alsulami, E. Karapinar, V. Rakočević, Cirić type nonunique fixed point theorems on b-metric spaces. Filomat 31:11 (2017), 3147–3156.
- [5] D. Zoran Mitrovic, Fixed point results in b-metric space. Fixed Point Theory, 20 (2019), No. 2, 559–566.
- [6] T. Kamran, M. Samreen, Q. Ain ul, A generalization of b-metric space and some fixed point theorems, *Mathematics*, 5 (2017), No. 2, Art. No. 19.
- [7] K. Menger, Statistical metrics. Proc. Nat. Acad. Sci. 28, 535–7 (1942).
- [8] B. Schweizer and A. Sklar, Probabilistic Metric Spaces, North-Holland Series in Probability and Applied Mathematics, 5, (1983).
- [9] A. Mbarki and R. Oubrahim, Probabilistic *b*-metric spaces and nonlinear contractions. *Fixed Point Theory and Applications* (2017) 2017:29.
- [10] A. Mbarki and R. Naciri, Probabilistic generalized metric spaces and nonlinear contractions. *Demonstr. Math.* 49 (4) 437–452 (2016).
- [11] A. Mbarki and R. Oubrahim, Probabilistic Φ-contraction in b-Menger spaces with fully convex structure. International Journal of Applied Mathematics. Volume 33 No. 4, 2020, 621–633.
- [12] A. Mbarki and R. Oubrahim, Some properties of convexity structure and applications in b-Menger spaces. SEMA SIMAI Springer Series, 2022, 29, pp. 181–189.
- [13] O. Hadzić, A fixed point theorem in Menger spaces, Publ. Inst. Math. (Beograd) T 20 (1979) 107-112.
- [14] M. De La Sen, About some controllability properties of linear discrete-time systems in probabilistic metric spaces. Informatica 27 (2006) 503–526.
- [15] I. Golet, H. Carstea, R. Negrea, On approximation of random signals and their usage in electronic packaging, 1st Electrinic System-integration Technology Conference, Dresden, Germany, 2006, pp. 589–593.
- [16] W. Guz, Stochastic phase spaces, fuzzy sets and statistical metric spaces. Found. Phys. 14 821-848 (1984).