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Abstract
In this paper, we investigate hyperlattices, which arise by replacing one (or both) binary operation(s) 
in a lattice with hyperoperation(s). Many authors have studied prime generalizations of ideals in 
rings and lattices. In this paper we focus on the prime generalizations of hyperideals in join hyper-
lattices. We introduce the notions of 2-absorbing, primary 2-absorbing primary, etc., in join hyperlat-
tices and explore their interrelations. We establish that the intersection of two prime hyperideals is 
2-absorbing, and the intersection of two Q-primary hyperideals is 2-absorbing primary. Finally, we 
study the of homomorphic images and pre-images of various types of hyperideals in join hyperlattices. 
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1. Introduction
The concept of a binary operation pertains to a system wherein two elements combine to produce 
another element. However, in many naturally occurring phenomena, the combination of two elements 
may yield more than one possible outcome. In such a scenario, the concept of hyperoperations proves 
more applicable than binary operations. A hyperoperation on a set   is a mapping  : ( )2 * →  , 
where *( )  denotes the collection of non-empty subsets of  . The theory of hyperstructures was 
initially introduced by Marty [1–2] in 1934. Subsequently, various researchers have contributed to 
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its development (see [3]). Preliminary definitions and propositions concerning hyperstructures can be 
seen in [4, 5] references, which further advanced and refined some notions. Pallavi et al. [6] studeied a 
different class of hyperstructure namely hypervector spaces over a hyperfield and extensively studied 
the properties of linear transformation. Also, the results discussed on lattice vector spaces [7] can be 
explored in the respective hyperstructures. Hyperlattice is a natural extension of a classical lattice. 
Out of the two binary operations ∨  and ∧  of a lattice, at least one of the binary operations is taken 
as a hyperoperation. Konstantiniodou [8] et al. introduced the theory of hyperlattices. Later, the dis-
tributivity of P-hyperlattices was discussed in [9]. In [10], the prime ideal theorem for meet and join 
hyperlattices was proved. Rasouli et al. [11] considered hyperlattices, superlattices and their quo-
tient structures with a regular relation and established a fundamental relation on a hyperlattice. In 
[12], the authors defined a topology on the collection of prime ideals and showed that it is a T0-space. 
Asokkumar [13] obtained conditions under which the set of idempotents of a Krasner Hyperring form 
a hyperlattice, and also studied orthogonal idempotent elements. Indeed, the concept of pure ideals 
in hyperlattices and their algebraic, topological characterizations were obtained by Blaise et al. [14]. 
Lashkenari et al. [15] defined the completion on join hyperlattices and explored their properties. 
Lashkenari and Davvaz [16] explored the idea of semi prime ideals in ordered hyperlatttices. Davvaz 
and Lashkenari [17] established results on principle, regular and compact elements in hyperlattices. 
Kehayopulu [18] has explored the distributivity and modularity of different classes of hyperlattices. 
In [19–21], the authors have discussed the notions of different prime generalizations of ideals like 
2-absorbing, primary, etc. in lattices. Pallavi et al. [22] have considered meet hyperlattices and estab-
lished the properties of various prime generalizations of hyperideals.

In this paper, we introduce various generalizations of prime hyperideals, namely 2-absorbing, pri-
mary, 2-absorbing primary in join hyperlattices. furthermore, we study the properties of annihila-
tors associated with these classes of hyperideals. We prove the results on homomorphic images and 
inverse images of 2-absorbing primary hyperideals. However, this situation does not hold in the case 
of a weak homomorphism. In particular, we show that the homomorphic image of a hyperideal under 
weak homomorphism need not be a hyperideal.

2. Preliminaries

Definition 2.1: [8] Let   be a non-empty set, and *( ) = { : }, A H A� � �  
W
: ( )*  � �   be a 

hyperoperation, and � � �:     be a binary operation. Then ( ), ,
W

∧  is a join hyperlattice if the 
following conditions hold:

 1. l l l1 1 1∈
W  and l l l1 1 1= ;∧  

 2. l l l l l l1 2 3 1 2 3=W W W W( ) ( )  and l l l l l l1 2 3 1 2 3( ) = ( ) ;∧ ∧ ∧ ∧  
 3. l l l l1 2 2 1=W W  and l l l l1 2 2 1= ;∧ ∧  
 4. l l l l l l l2 2 1 2 2 1 2( ),� � � �( )W W

for all l l l1 2 3, , .∈

The relation ‘≤ ’ on   as follows:
l l l l l1 2 1 2 1= .� �if and only if

Then ,�� � is a Poset [11].
Throughout, ( ), ,W ∧  denotes a join hyperlattice.

Definition 2.2: [15] A non-empty subset J of   is called a hyperideal if

 1.  l l J1 2 ;W
⊆  for all l l J1 2, ,∈  

 2.  l J l1 2,∈ ∈, l l2 1,≤  then l J2 ,∈  holds.



Panackal et al., Results in Nonlinear Anal. 6 (2023), 128–139. 130

Definition 2.3: [15] A proper hyperideal J of   is said to be prime if l l1 2, ∈ and l l J1 2� �  implies 
l J1 ∈  or l J2 .∈

Definition 2.4: [15]   is said to be 
 1. distributive if l l l l l l l1 2 3 1 2 1 3( ) = ( ) ( );∧ ∧ ∧

W W  
 2. s-distributive if l l l l l l l1 2 3 1 2 1 3( ) = ( ) ( ),W W W

∧ ∧  
for all l l l1 2 3, , ,∈  hold.

Theorem 2.5: [9] Let ( , , )L � �  be a lattice and P a non-empty subset of L. We define a hyperoperation WP  on L by 

l l l l P l l p p P
P

1 2 1 2 1 2= = { | }.W
� � � � �

Then ( , , )L PW ∧  is a join hyperlattice if and only if for each l L2 ∈  there exists p P∈  such that p l≤ 2.

3. Classes of prime hyperideals in join hyperlattices

We denote the set of all hyperideals of   by Id( ).  We give some examples of join hyperlattices.

Example 3.1: Let  be the set of all natural numbers and  � � the set of all subsets of . Let X = { ,{1,2}}φ
. Define the operations W and ∧  as follows: 

A B A B X A B C C X A B A BW = = { | } =� � � � � � �and

for any A B, .� � �   Then ( ( ) )  , ,W ∧  is a join hyperlattice. 

Example 3.2: Let  = = {1,2,3,5,6,10,15,30},30D  the set of all positive divisors of 30. The hyperoper-
ation W and the binary operation ∧  on   are defined in Table 1. Then ( , , )W ∧  is a join hyperlattice.

Definition 3.3: Let J Id∈ ( ).  J is called 2-absorbing if whenever l l l1 2 3, , ∈ with l l l J1 2 3 ,� � �  then 
either l l J1 2� �  or l l J2 3� �  or l l J1 3 .� �

Remark 3.4: Every prime hyperideal is 2-absorbing. 

Lemma 3.5: Let J J Id1 2, ( ).∈   Then J J Id1 2 ( ).� � 

Proposition 3.6: If Q and ′Q  are prime hyperideals of  , then Q Q� � is 2-absorbing. 

Proof. Let Q and ′Q  be prime hyperideals of   and J Q Q= .� �  From Lemma 3.5, J Id∈ ( ).  Suppose 
that l l l J1 2 3 .� � �  Then l l l Q1 2 3� � �  and l l l Q1 2 3 .� � � �  This means, l l Q1 2� �  or l Q3 ∈  and l l Q1 2� � � 
or l Q3 .� �

If l Q3 ∈  and l Q3 ,� �  then l J3 ,∈  and so l l J1 3 .� �
If l l Q1 2� �  and l l Q1 2 ,� � �  then l l J1 2 .� �
Suppose that l l Q1 2� �  and l Q3 .� �  Since Q is prime hyperideal, we have, l Q1 ∈  or l Q2 .∈  If l Q1 ∈  

then l l Q1 3� �  and it follows that l l Q1 3 .� � �  So l l J1 3 .� �  If l Q2 ∈  then l l Q2 3� �  and l l Q2 3 .� � �  So 
l l J2 3 .� �

Definition 3.7: For J Id∈ ( ),  we define the radical of J as the intersection of all prime hyperideals 
containing J and we denote it by rad J∨ ( ). If J is not contained in any prime hyperideal, then we take 
rad J∨ ( ) = .

Example 3.8: Let  = {0, , , , ,1}1 2 3 4l l l l  and the hyperoperation W and the binary operation ∧  be defined 
as in Table 2: 

Then ( ), ,W ∧  is a hyperlattice. Here, I l= {0, }1  is a hyperideal of , and rad I l∨ ( ) = {0, }1  (see, Figure 1).
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Remark 3.9: In a s-distributive hyperlattice, a hyperideal is equal to its radical. This need not be true 
in the case of non s-distributive hyperlattices. We show this in the following example. 

Example 3.10: Let  = {0, , , , , , , , , ,1}.a b c d e f g h i  The hyperoperation W and the binary operation ∧  on   
are represented by the following Table 3:

Then ( ), ,W ∧  is a non s-distributive join hyperlattice. Let J a b c f= {0, , , , }. Then we can see that 
rad J a b c d e f g h i∨ ( ) = {0, , , , , , , , , }  (see, Figure 2).

Proposition 3.11: Let J J Id, ( ).��   We have the following

 1. If J is prime, then rad J J∨ ( ) = . 
 2. rad rad J rad J∨ ∨ ∨( ( )) = ( ).
 3. If J J� �, then rad J rad J� �� �( ) ( ). 

Table 1.W
1 2 3 5 6 10 15 30 

1 {1} {2} {3} {5} {6} {10} {15} {30} 
2 {2} {1,2} {6} {10} {3,6} {5,10} {30} {15,30} 
3 {3} {6} {1,3} {15} {2,6} {30} {5,15} {10,30} 
5 {5} {10} {15} {1,5} {30} {2,10} {3,15} {6,30} 
6 {6} {3,6} {2,6} {30} {1,2,3,6} {15,30} {10,30} {5,10,15,30} 
10 {10} {5,10} {2,10} {30} {15,30} {1,2,5,10} {6,30} {3,6,15,30} 
15 {15} {30} {5,15} {3,15} {10,30} {6,30} {1,3,5,15} {2,6,10,30}
30 {30} {15,30} {10,30} {6,30} {5,10,15,30} {3,6,15,30} {2,6,10,30}   

∧  1 2 3 5 6 10 15 30 
1 1 1 1 1 1 1 1 1 
2 1 2 1 1 2 2 1 2 
3 1 1 3 1 3 1 3 3 
5 1 1 1 5 1 5 5 5 
6 1 2 3 1 6 2 3 6 
10 1 2 1 5 2 10 5 10 
15 1 1 3 5 3 5 15 15 
30 1 2 3 5 6 10 15 30 

Table 2.W
0 l1 l2 l3 l4 1 ∧ 0 l1 l2 l3 l4 1

0 {0, l1} {l1} {l2, l3} {l3} {l4, 1} {1} 0 0 0 0 0 0 0
l1 {l1} {l1} {l3} {l3} {1} {1} l1 0 l1 0 0 0 l1

l2 {l2, l3} {l3} {l2, l3} {l3} {l4, 1} {1} l2 0 0 l2 l2 l2 l2

l3 {l3} {l3} {l3} {l3} {1} {1} l3 0 l1 l2 l3 l2 l3

l4 {1} {1} {l4, 1} {1} {l4, 1} {1} l4 0 0 l2 l2 l4 l4

1 {1} {1} {1} {1} {1} {1} 1 0 l1 l2 l3 l4 1
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 4. rad J J rad J rad J� � �� � � �( ) = ( ) ( ).

Proof. The proofs of (1), (2) and (3) follow from the Definition 3.7.
(4) Clearly, rad J J rad J rad J� � �� � � � �( ) ( ) ( ). Now, let � � � �� �rad J rad J( ) ( ). If � � � ��rad J J( ) 

then there exists Q Id∈ ( ),  Q is prime such that J J Q� � �  and � �Q. Also, if J Q⊆ , then rad J Q� �( ) , 
hence, � �Q, a contradiction. So J Q  and ′J Q  and hence, J Q\ � � and � � �J Q\ . Let i J Q∈ \  
and j J Q� � \ . Then i j J� �  and i j J� � �. Therefore, i j J J Q� � � � � , contradicts the fact that Q is 
prime.
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1
{1}

l3
{l3}

l4
{l4, 1}

l1
{l1}

l2
{l2, l3}

0
{0, l1}

Figure 1.

Table 3.

Then (H,
∨
,∧) is a non s-distributive join hyperlattice. Let J = {0, a, b, c, f}.

Then we can see that rad∨(J) = {0, a, b, c, d, e, f, g, h, i} (see, Figure 2).

Proposition 3.11. Let J, J ′ ∈ Id(H). We have the following
(1) If J is prime, then rad∨(J) = J.
(2) rad∨(rad∨(J)) = rad∨(J).
(3) If J ⊆ J ′, then rad∨(J) ⊆ rad∨(J

′).
(4) rad∨(J ∩ J ′) = rad∨(J) ∩ rad∨(J

′).

Figure 1.

Table 3.W
0 a b c d e f g h i 1

0 {0, c} {a, f} {b, f} {c} {d, h} {h, e} {f} {g} {h} {i} {1}
a {a, f} {a, f} {f} {f} {i} {i} {f} {i} {i} {i} {1}
b {b, f} {f} {b, f} {f} {i} {i} {f} {i} {i} {i} {1}
c {l3} {f} {f} {l3} {h} {h} {f} {g} {h} {i} {1}
d {d, h} {i} {i} {h} {d, h} {h} {i} {i} {h} {i} {1}
e {e, h} {i} {i} {h} {h} {e, h} {i} {i} {h} {i} {1}
f {f} {f} {f} {f} {i} {i} {f} {i} {i} {i} {1}
g {g} {i} {i} {g} {i} {i} {i} {g} {i} {i} {1}
h {h} {i} {i} {h} {h} {h} {i} {i} {h} {i} {1}
i {i} {i} {i} {i} {i} {i} {i} {i} {i} {i} {1}
1 {1} {1} {1} {1} {1} {1} {1} {1} {1} {1} {1}

∧ 0 a b c d e f g h i 1
0 0 0 0 0 0 0 0 0 0 0 0
a 0 a 0 0 0 0 a 0 0 a a
b 0 0 b 0 0 0 b 0 0 b b
c 0 0 0 c 0 0 c c c c c
d 0 0 0 0 d 0 0 0 d d d
e 0 0 0 0 0 e 0 0 e e e
f 0 a b c 0 0 f c c f f
g 0 0 0 c 0 0 c g c g g
h 0 0 0 c d e c c h h h
i 0 a b c d e f g h i i
1 0 a b c d e f g h i 1
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Example 3.12: Let  = {0, , , , ,1}.1 2 3 4l l l l  Define the hyperoperation W and binary operation ∧  on   by 
Table 4: 

Then ( ), ,W ∧  is a hyperlattice. Here, I l= {0, }2  is a hyperideal of , and rad I l∨ ( ) = {0, }2  (see, Figure 
3).

Definition 3.13: J Id∈ ( )  is called a primary hyperideal if whenever l l1 2, ∈ and l l J1 2 ,� �  then 
l J1 ∈  or l rad J2 ( ).� �

Example 3.14: In Example 3.12, I l= {0, },1  is a primary hyperideal. 
Evidently, every prime hyperideal of   is a primary hyperideal. The converse need not be true as 

shown in Example 3.15.

Example 3.15: In Example 3.10, J a b c f= {0, , , , } is a primary hyperideal but not a prime hyperideal as 
we see d e J� �  but b J∉  and e J∉ . 

Theorem 3.16: For any J Id∈ ( ),  rad J∨ ( ) is prime if and only if rad J∨ ( ) is primary. 

Proof. Suppose that rad J∨ ( ) is primary for some J Id∈ ( )  and that l l J1 2� �  for l l1 2, .∈  Then either 
l rad J1 ( )� �  or l rad rad J rad J2 ( ( )) = ( ),� � � �  shows that rad J∨ ( ) is prime. The other part follows from 
the definition.

Definition 3.17: J Id∈ ( )  is called a 2-absorbing primary hyperideal if whenever l l l1 2 3, , ,∈  
l l l J1 2 3 ,� � �  then either l l J1 2� �  or l l rad J2 3 ( )� � �  or l l rad J1 3 ( ).� � �

Now we have the following Remark.

Remark 3.18:
 1. If J Id∈ ( ),  is primary then J is 2-absorbing primary.
 2. If J Id∈ ( )  is 2-absorbing, then J is 2-absorbing primary.

Example 3.19: Let  = {0, , , , , ,1}.1 2 3 18l l l l  We define the hyperoperation W and the binary operation on 
  as shown in the Figure 4. We give the lattice diagram as in Figure 4. In the diagram, the meet of two 
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0
{0, c}

a
{a, f}

b
{b, f}

c
{c}

d
{d, h}

e
{e, h}

f
{f}

g
{g}

h
{h}

i
{i}

1
{1}

Figure 2.

Proof. The proofs of (1), (2) and (3) follow from the Definition 3.7.
(4) Clearly, rad∨(J ∩ J ′) ⊆ rad∨(J) ∩ rad∨(J

′). Now, let α ∈ rad∨(J) ∩
rad∨(J

′). If α /∈ rad∨(J ∩ J ′) then there exists Q ∈ Id(H), Q is prime such
that J ∩ J ′ ⊆ Q and α /∈ Q. Also, if J ⊆ Q, then rad∨(J) ⊆ Q, hence,
α ∈ Q, a contradiction. So J ⊈ Q and J ′ ⊈ Q and hence, J \ Q ̸= ∅ and
J ′ \ Q ̸= ∅. Let i ∈ J \ Q and j ∈ J ′ \ Q. Then i ∧ j ∈ J and i ∧ j ∈ J ′.
Therefore, i ∧ j ∈ J ∩ J ′ ⊆ Q, contradicts the fact that Q is prime. □

Example 3.12. Let H = {0, l1, l2, l3, l4, 1}. Define the hyperoperation
∨

and
binary operation ∧ on H by Table 4:

Table 4.

Then (H,
∨
,∧) is a hyperlattice. Here, I = {0, l2} is a hyperideal of H, and

rad∨(I) = {0, l2} (see, Figure 3).

Definition 3.13. J ∈ Id(H) is called a primary hyperideal if whenever
l1, l2 ∈ H and l1 ∧ l2 ∈ J, then l1 ∈ J or l2 ∈ rad∨(J).

Example 3.14. In Example 3.12, I = {0, l1}, is a primary hyperideal.

Evidently, every prime hyperideal of H is a primary hyperideal. The converse
need not be true as shown in Example 3.15.

Example 3.15. In Example 3.10, J = {0, a, b, c, f} is a primary hyperideal
but not a prime hyperideal as we see d ∧ e ∈ J but b /∈ J and e /∈ J .

Figure 2.

Table 2.W
0 l1 l2 l3 l4 1 ∧ 0 l1 l2 l3 l4 1

0 {0, l2} {l1, l3} {l2} {l3} {l4} {1} 0 0 0 0 0 0 0
l1 {l1, l3} {l1, l3} {l3} {l3} {1} {1} l1 0 l1 0 0 0 l1

l2 {l2} {l3} {l2} {l3} {l4} {1} l2 0 0 l2 l2 l2 l2

l3 {l3} {l3} {l3} {l3} {1} {1} l3 0 l1 l2 l3 l2 l3

l4 {l4} {1} {l4} {1} {l4} {1} l4 0 0 l2 l2 l4 l4

1 {1} {1} {1} {1} {1} {1} 1 0 l1 l2 l3 l4 1
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elements is depicted as in a classical lattice. In contrast, the join of two elements is represented as a set 
written below the lattice elements. For instance, 0 0 = {0, }, = { }, = { , }, = { , }.2 1 2 6 8 8 8 13 5 12 12 15

W W W Wl l l l l l l l l l l l
Here, J l Id= {0, } ( )2 ∈   and rad J l l( ) = { , ,1}12 15 \ . Then J is 2-absorbing primary. But J is not a 

2-absorbing hyperideal, since l l l9 10 12 = 0,∧ ∧  and neither l l J9 10� �  nor l l J9 12� �  nor l l J10 12 .� �  In 
Example 3.20, we show a hyperideal which is J-absorbing primary but not primary.

Example 3.20: Let  = {0, , , , , ,1}.1 2 3 18l l l l  We define both the operations on   as shown in the Figure 
3.5. Here, J l= {0, }1  is a hyperideal and rad J l l l( ) = {0, , , }1 5 9 . We can see that J is J-absorbing primary. 
But it is not a primary hyperideal, since l l J2 4� �  but l J2 ∉  and l J4 .∉

Theorem 3.21: If J Id∈ ( )  such that rad J∨ ( ) is prime, then J is 2-absorbing primary. 

Proof. Suppose that l l l J1 2 3 ,� � �  where l l l1 2 3, , .∈
Case (1): Suppose that l l rad J1 2 ( ).� � �  Since rad J∨ ( ) is a prime, we have l rad J3 ( ).� �  Then 

l l rad J1 3 ( )� � �  and l l rad J2 3 ( ).� � �
Case (2): Suppose that l l rad J1 2 ( ).� � �  Since rad J∨ ( ) is prime, either l rad J1 ( )� �  or l rad J2 ( ).� �  So 

l l rad J1 3 ( )� � �  or l l rad J2 3 ( ).� � �  Hence, J is a 2-absorbing primary hyperideal of .

Corollary 3.22: Let J ∈. Then rad J∨ ( ) is a 2-absorbing hyperideal of   if and only if rad J∨ ( ) is 
2-absorbing primary. 

Definition 3.23: A primary hyperideal J of   is called P-primary if P is the only prime hyperideal 
such that J P⊆ .

Remark 3.24: If J Id∈ ( )  is Q-primary, then rad J Q∨ ( ) = .

Figure 3.
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1
{1}

l3
{l3}

l4
{l4}

l1
{l1, l3}

l2
{l2}

0
{0, l2}

Figure 3.

Theorem 3.16. For any J ∈ Id(H), rad∨(J) is prime if and only if rad∨(J)
is primary.

Proof. Suppose that rad∨(J) is primary for some J ∈ Id(H) and that l1∧l2 ∈
J for l1, l2 ∈ H. Then either l1 ∈ rad∨(J) or l2 ∈ rad∨(rad∨(J)) = rad∨(J),
shows that rad∨(J) is prime. The other part follows from the definition. □

Definition 3.17. J ∈ Id(H) is called a 2-absorbing primary hyperideal if
whenever l1, l2, l3 ∈ H, l1∧l2∧l3 ∈ J, then either l1∧l2 ∈ J or l2∧l3 ∈ rad∨(J)
or l1 ∧ l3 ∈ rad∨(J).

Now we have the following Remark.

Remark 3.18. (1) If J ∈ Id(H), is primary then J is 2-absorbing pri-
mary.

(2) If J ∈ Id(H) is 2-absorbing, then J is 2-absorbing primary.

Example 3.19. Let H = {0, l1, l2, l3, · · · , l18, 1}. We define the hyperop-
eration

∨
and the binary operation on H as shown in the Figure 4. We

give the lattice diagram as in Figure 4. In the diagram, the meet of two
elements is depicted as in a classical lattice. In contrast, the join of two ele-
ments is represented as a set written below the lattice elements. For instance,
0
∨

0 = {0, l2}, l1
∨

l2 = {l6}, l8
∨

l8 = {l8, l13}, l5
∨

l12 = {l12, l15}.

Here, J = {0, l2} ∈ Id(H) and rad(J) = H \ {l12, l15, 1}. Then J is 2-
absorbing primary. But J is not a 2-absorbing hyperideal, since l9∧l10∧l12 =
0, and neither l9 ∧ l10 ∈ J nor l9 ∧ l12 ∈ J nor l10 ∧ l12 ∈ J. In Example 3.20,
we show a hyperideal which is 2-absorbing primary but not primary.

Example 3.20. Let H = {0, l1, l2, l3, · · · , l18, 1}. We define both the opera-
tions on H as shown in the Figure 5. Here, J = {0, l1} is a hyperideal and
rad(J) = {0, l1, l5, l9}. We can see that J is 2-absorbing primary. But it is
not a primary hyperideal, since l2 ∧ l4 ∈ J but l2 /∈ J and l4 /∈ J.

Theorem 3.21. If J ∈ Id(H) such that rad∨(J) is prime, then J is 2-
absorbing primary.

Figure 4.

8 HARIKRISHNAN, PALLAVI, MADELEINE, VADIRAJA, KUNCHAM

0
{0, l2}

l1
{l1, l6}

l2
{l2}

l3
{l3, l16}

l4
{l4, 1}

l5
{l5, l8}

l6
{l6}

l7
{l7, l16}

l8
{l8}

l9
{l9, l13}

l10
{l10, 1}

l11
{l11, l16}

l12
{l12, 1}

l13
{l13}

l14
{l14, l16}

l15
{l15, 1}

l16
{l16}

l17
{l17,, 1}

l18
{l18, 1}

1
{1}

Figure 4.

0
{0, l1}

l1
{l1}

l2
{l2, l6}

l3
{l3, l7}

l4
{l4, l10}

l5
{l5, l9}

l6
{l6}

l7
{l7}

l8
{l8, l13}

l9
{l9}

l10
{l10}

l11
{l11, l14}

l12
{l12, l15}

l13
{l13}

l14
{l14}

l15
{l15}

l16
{l16}

l17
{l17,}

l18
{l18}

1
{1}

Figure 5.

Proof. Suppose that l1 ∧ l2 ∧ l3 ∈ J, where l1, l2, l3 ∈ H.
Case (1): Suppose that l1 ∧ l2 /∈ rad∨(J). Since rad∨(J) is a prime, we have
l3 ∈ rad∨(J). Then l1 ∧ l3 ∈ rad∨(J) and l2 ∧ l3 ∈ rad∨(J).
Case (2): Suppose that l1 ∧ l2 ∈ rad∨(J). Since rad∨(J) is prime, either
l1 ∈ rad∨(J) or l2 ∈ rad∨(J). So l1 ∧ l3 ∈ rad∨(J) or l2 ∧ l3 ∈ rad∨(J).
Hence, J is a 2-absorbing primary hyperideal of H. □

Corollary 3.22. Let J ∈ H. Then rad∨(J) is a 2-absorbing hyperideal of H
if and only if rad∨(J) is 2-absorbing primary.
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Proposition 3.25: Let Q and ′Q  be prime hyperideals in   and J J Id, ( )��   such that J is Q-primary 
and ′J  is ′Q -primary. Then J J� � is 2-absorbing primary. 

Proof. Let I J J= .� �  Since J and ′J  are Q Q, ′-primary respectively, it follows from Proposition 3.11(4) 
and Remark 3.24, we get rad I Q Q� � �( ) = . To see I is 2-absorbing primary, let l i l l l Ii (1 3) , 1 2 3� � � � � �  
with l l rad I2 3 ( )� � �  and l l rad I1 3 ( ).� � �  If any of l1 or l2 or l3 is in rad I∨ ( ), then we get either 
l l rad I2 3 ( )� � �  or l l rad I1 3 ( ),� � �  a contradiction. Therefore, l i rad Ii (1 3) ( ).� � � �  As I rad I� � ( ), 
we get l l l Q Q1 2 3 .� � � � �  Then by Proposition 3.6, we get l l Q Q1 2 .� � � �  This means l l Q1 2� �  and 
l l Q1 2 .� � �  Since Q and ′Q  are prime hyperideals, we get l Q l Q1 2,� � � and l Q l Q1 2, .� � �

Suppose that l J1 .∉  As J is a primary hyperideal, and l l l J1 2 3 ,� � �  we get l l Q2 3 .� �  Since l Q2 ,� �  
so l l Q2 3 ,� � �  yields l l Q Q2 3 ,� � � �  a contradiction. Hence, l J1 .∈  Similarly, we can show l J2 .� �  Thus, 
l l I1 2 .� �

4. Annihilator hyperideals

Definition 4.1: [23] An element l ∈ is called distributive, if 
l l l l l l l∧ ∧ ∧( )1 2 1 2= ( ) ( ),W W

for all l l1 2, ∈ holds.

Definition 4.2: Let J J Id, ( )��   and x ∈. We define, 
[ : ] = { : }1 1J x l l x J� � �

[0 : ] = { : = 0}2 2x l x l� �

and
[ : ] = { : }.1 1 2 2J J l l l J l J� � � � � � �

Proposition 4.3: Let   be a distributive hyperlattice and J J Id, ( ).��   Then [ : ] ( ).J J Id� � 

Proof. Suppose that l l J J1 2 1 2, [ : ]∈  and x J∈ 2. Then l x J1 1� �  and l x J2 1.� �  Now ( ) ( )1 2 1l x l x J� � �
W  

and since   is distributive, we get ( ) ( ) = ( ) .1 2 1 2 1l x l x l l x J� � � �
W W  Hence, l l J J1 2 1 2[ : ].W

⊆
Suppose that x J l J J∈ ∈2 2 1 2, [ : ], l1 ∈  with l l1 2.≤  Then l x J2 1,� �  and so l x l x l x J1 2 1 1= ( ) ( ) .� � � � �
The following Corollary is straightforward.
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Proof. Suppose that l1 ∧ l2 ∧ l3 ∈ J, where l1, l2, l3 ∈ H.
Case (1): Suppose that l1 ∧ l2 /∈ rad∨(J). Since rad∨(J) is a prime, we have
l3 ∈ rad∨(J). Then l1 ∧ l3 ∈ rad∨(J) and l2 ∧ l3 ∈ rad∨(J).
Case (2): Suppose that l1 ∧ l2 ∈ rad∨(J). Since rad∨(J) is prime, either
l1 ∈ rad∨(J) or l2 ∈ rad∨(J). So l1 ∧ l3 ∈ rad∨(J) or l2 ∧ l3 ∈ rad∨(J).
Hence, J is a 2-absorbing primary hyperideal of H. □

Corollary 3.22. Let J ∈ H. Then rad∨(J) is a 2-absorbing hyperideal of H
if and only if rad∨(J) is 2-absorbing primary.

Figure 5.
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Corollary 4.4: If I Id∈ ( )  and x ∈, a distributive element, then the set [ : ] ( ).I x Id∈ 
For any y I∈ , where I Id∈ ( ),  y x I� � , and hence, y I x∈[ : ]. More formally, we have the following.

Corollary 4.5: Let I Id∈ ( )  and x ∈. Then I I x⊆ [ : ].

Remark 4.6: Let J J Id1 2, ( ).∈   Then J J J1 1 2[ : ].⊆

Corollary 4.7: Let   be a distributive hyperlattice and J J Id1 2, ( ).∈   If J1 is a prime hyperideal and 
J J2 1,  then [ : ] =1 2 1J J J

Proof. By Remark 4.6, J J J1 1 2[ : ].⊆  Let x J J∈[ : ].1 2  Then x y J� � 1 for all y J∈ 2. In particular, for 
z J J∈ 2 1,\  we get x z J� � 1. Since z J∉ 1 and J1 is prime, we get x J∈ 1. Therefore, [ : ] .1 2 1J J J⊆

 The following corollary is straightforward.

Corollary 4.8: Let I be a prime hyperideal of   and x I∈\  be a distributive element. Then I I x= [ : ].

Proposition 4.9: Let x ∈ be a distributive element and J1 a 2-absorbing hyperideal of . Then 
[ : ]1J x  is 2-absorbing. 

Proof. By Corollary 4.4, [ : ]1J x  is a hyperideal of . Suppose that l l l J x1 2 3 1[ : ]� � �  where l ii (1 3) .� � �  
Then ( ) .1 2 3 1l l l x J� � � �  Then either ( )1 2 3 1l l l J� � �  or ( )1 2 1l l x J� � �  or l x J3 1.� �

Case (1): Suppose that ( ) .1 2 3 1l l l J� � �  Since J1 is 2-absorbing, we have l l J1 2 1� �  or l l J2 3 1� �  or 
l l J1 3 1.� �  As J I x1 [ : ],⊆  we get l l J x1 2 1[ : ]� �  or l l J x2 3 1[ : ]� �  or l l J x1 3 1[ : ].� �

Case (2): Suppose that ( ) .1 2 1l l x J� � �  Since J1 is 2-absorbing, we get l l J1 2 1� �  or l x J2 1� �  or 
l x J1 1.� �  So we get l l J x1 2 1[ : ]� �  or l J x1 1[ : ]∈  or l J x2 1[ : ]∈ .

Case (3): If l x J3 1,� �  then l J x3 1[ : ].∈

Proposition 4.10: Let J1 be a primary hyperideal of   and x rad J� � ( )1  be a distributive element in 
. Then [ : ]1J x  is primary. 

Proof. By Corollary 4.4, [ : ]1J x  is a hyperideal of . To prove [ : ]1J x  is primary, let l l J x1 2 1[ : ]� �  
for some l l1 2, .∈  Then ( ) .1 2 1l l x J� � �  As J1 is primary, and x rad J� � ( ),1  we get l l J1 2 1.� �  Again, 
from the fact that J1 is primary we get l J1 1∈  or l rad J2 1( ).� �  Since J J x1 1[ : ],⊆  we get l J x1 1[ : ]∈  or 
l rad J x2 1[ : ].� �

Proposition 4.11: Let J J J Id1 2 3, , ( ).∈   If J J J1 2 3� �  then J J1 2⊆  or J J1 3.⊆

Proposition 4.12: Let � � �J Id( .)  Then the following statements are equivalent:

 1. J  is 2-absorbing primary. 
 2. If l l J1 2, ∈  with l l rad J1 2 ( ),� � �  then [ : ] [ : ]1 2 1J l l J l� �  or [ : ] [ ( ) : ].1 2 2J l l rad J l� � �  
 3. If l J Id1 , ( )� ��   with l J rad J1 ( ),� � �  then [ : ] [ : ]1J l J J J� � � �  or [ : ] [ ( ) : ].1 1J l J rad J l� � � �  
 4. If J J Id1 2, ( ),∈   J J J1 2 ,∩   then either [ : ] [ ( ) : ]1 2 1J J J rad J J� � �  or [ : ] [ ( ) : ].1 2 2J J J rad J J� � �  
 5. If J J J Id1 2 3, , ( ),∈   J J J J1 2 3 ,� � �  then either J J J1 2� �  or J J rad J2 3 ( )� � �  or 

J J rad J1 3 ( ).� � �

Proof. (1) ⇒ (2)
Suppose that l l1 2, ∈ with l l rad J1 2 ( ).� � �  Let l J l l� �[ : ]1 2 . Then l l l J� � �1 2 . Since J  is 2- 

absorbing primary, either l l J� �1  or l l rad J� � �2 ( ). That is, l J l∈[ : ]1  or l rad J l� �[ ( ) : ]2 . And 
so [ : ] [ : ] [ ( ) : ].1 2 1 2J l l J l rad J l� � � �  Then by Proposition 4.11, we get [ : ] [ : ]1 2 1J l l J l� �  or 
[ : ] [ ( ) : ].1 2 2J l l rad J l� � �

(2) ⇒ (3)
Suppose that l J Id1 1, ( )∈ ∈   with l J rad J1 1 ( ).� �  Let l J l J� �[ : ].1 1  Then l l J J� � �1 1 . 

And so J J l l1 1[ : ].� �  Now, if l l rad J� �1 ( ), then l rad J l� �[ ( ) : ].1  If l l rad J� �1 ( ), then by (2), 
we get [ : ] [ : ]1J l l J l� �  or [ : ] [ ( ) : ],1 1J l l rad J l� � �  and hence, J J l1 [ : ]⊆  or J rad J l1 1[ ( ) : ].� �  If 
J rad J l1 1[ ( ) : ],� �  then l J rad J1 1 ( ),� � �  a contradiction. So [ : ] [ : ].1J l l J l� �  Then J l J1 .� �  That 
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is, l J J∈[ : ].1  Therefore, l J J rad J l� � �[ : ] [ ( ) : ].1 1  So [ : ] [ : ] [ ( ) : ].1 1 1 1J l J J J rad J l� � � �  Then by 
Proposition 4.11, we get [ : ] [ : ]1 1 1J l J J J� �  or [ : ] [ ( ) : ].1 1 1J l J rad J l� � �

(3) ⇒ (4)
Suppose that J J Id1 2, ( )∈   with J J J1 2 .∩   Let l J J J� �[ : ].1 2  Then l J J J� � �1 2  

and so J J l J2 1[ : ]� � . If l J rad J� � �1 1( ), then l rad J J� �[ ( ) : ].1  If l J rad J� �1 1( ),  then 
[ : ] [ : ]1 1J l J J J� �  or [ : ] [ ( ) : ].1J l J rad J l� � �  If [ : ] [ : ],1 1J l J J J� �  then J J J2 1[ : ].⊆  Then we 
get J J J1 2 ,� �  a contradiction. Therefore, [ : ] [ ( ) : ],1J l J rad J l� � �  which gives J rad J l2 [ ( ) : ].� �  
So [ : ] [ ( ) : ] [ ( ) : ].1 2 1 2J J J rad J J rad J J� � �� �  That is, l rad J J� �[ ( ) : ].2  Thus, by Proposition 4.11, 
[ : ] [ ( ) : ]1 2 1J J J rad J J� � �  or [ : ] [ ( ) : ].1 2 2J J J rad J J� � �

(4) ⇒ (5)
Suppose that J J J Id1 2 3, , ( )∈   with J J J1 2 .∩   Then either [ : ] [ ( ) : ]1 2 1J J J rad J J� � �  or 

[ : ] [ ( ) : ].1 2 2J J J rad J J� � �  Since J J J J1 2 3 ,� � �  we have J J J J3 1 2[ : ]� �  and so J rad J J3 1[ ( ) : ]� �  
or J rad J J3 2[ ( ) : ].� �  Therefore, J J rad J1 3 ( )� � �  or J J rad J1 3 ( ).� � �

(5) ⇒ (1) Obvious.

5. Homomorphisms in join hyperlattices

It is noted that the authors [3] defined homomorphism between two algebraic hyperstructures in more 
than one way. Similarly, we define weak homomorphism in a hyperlattice. In Example 5.2, we show that 
the homomorphic image of a hyperideal under weak homomorphism need not be a hyperideal again.

Definition 5.1: Let   and ' be two join hyperlattices. A mapping � : ' �  is a weak homomor-
phism if the following conditions satisfy:

 1. � � �( )u v u vW W
� ( ) ( ),  

 2. � � �( ) = ( ) ( ),u v u v� �

for all u v, .∈  If Condition 1 holds with equality, then we say η  is a homomorphism.

Example 5.2: Let  = {0, , ,1}.1 2l l  The hyperoperations W W
1 2,  and binary operation ∧  on   are defined 

in Table 5: 
 1 1= ( , , )W

∧  and  2 2= ( , , )W
∧  are join hyperlattices. Let f : 1 2 →  be defined as 

f f l l f l l f(0) = 0, ( ) = , ( ) = , (1) =11 1 2 2 . It can be seen that f  is a bijective weak homomorphism. Note that I = {0} 
is a hyperideal of 1. But f I( ) is not a hyperideal of 2, because f f l f I(0) (0) = 0 0 = {0, } {0} = ( ).2 2 2

W W 

Proposition 5.3: [24] Let   and ' be two join hyperlattices and let � : ' �  be a homomorphism.

 1. If ��J Id( ')  and �� � � �1( ) ,J  then �� �1( ) ( ).J Id   
 2.  If η  is an isomorphism and J Id∈ ( ),  then �( ) ( ').J Id�   

Proposition 5.4: [24] Let   and ' be two join hyperlattices and let � : ' �  be a homomorphism.

 1.  If ′J  is a prime hyperideal of ' and �� � � �1( ) ,J  then ��1( )J  is a prime hyperideal of . 
 2.  If � : ' �  is an isomorphism and J  is a prime hyperideal of , then η( )J  is a prime hyperideal 

of '. 

Table 5.W
1

0 l1 l2 1
W

2
0 l1 l2 1 ∧ 0 l1 l2 1

0 {0} {l1} {l2} {1} 0 {0, l2} {l1, 1} {l2} {1} 0 0 0 0 0
l1 {l1} {l1} {1} {1} l1 {l2, 1} {l1, 1} {1} {1} l1 0 l1 0 l1

l2 {l2} {1} {l2} {1} l2 {l2} {1} {l2} {1} l2 0 0 l2 l2

1 {1} {1} {1} {1} 1 0 {1} {1} {1} 1 0 l1 l2 1
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Theorem 5.5: Let   and ' be two join hyperlattices and let � : ' �  be an isomorphism. Then

 1.  � ��
� �

�� �1 1( ( )) = ( ( ))rad J rad J  where ′J  is a hyperideal of '. 
 2.  � �( ( )) = ( ( ))rad J rad J� �  where J  is a hyperideal of . 

Proof. 1. Let ′Qi ’s be the prime hyperideals containing ′J . Then

� � � ��
�

�
�

�
� �

�� � � �1 1 1 1( ( )) = = ( ) = ( ( ))rad J Q Q rad Ji i 

because each 's are prime hyperideals containing� ��
�

� �� 1 1( ) ( )Q Ji ��
2. Let Qi ’s be the prime hyperideals containing J. Then 

� � �( ( )) = = ( ) = ( ( ))rad J f Q Q rad Ji i� �� �
 

because each 's are prime hyperideals containing� �( ) ( )Q Ji� �

Proposition 5.6: Let   and ' be two join hyperlattices and let � : ' �  be an isomorphism.

 1. If ′J  is a 2-absorbing primary hyperideal of ', then ��1( )J  is a 2-absorbing primary hyperideal of . 
 2. If J  is a 2-absorbing primary hyperideal of , then η( )J  is a 2-absorbing primary hyperideal of '. 

Proof. 1. Let ′J  be a 2-absorbing hyperideal of '. Let l ii (1 3)� � �  such that l l l J1 2 3
1( ).� � � ���  

Clearly, � � �( ) ( ) ( ) .1 2l l w J� � � �  Since ′J  is a 2- absorbing primary hyperideal, � �( ) ( )1 2l l J� � � or 
� �( ) ( ) ( )2 3l l rad J� � ��  or � �( ) ( ) ( )1 3l l rad J� � �� . This implies that, �( )1 2l l J� � � or �( ) ( )2 3l l rad J� � ��  
or �( ) ( ).1 3l l rad J� � ��  That is, l l J1 2

1( )� � ���  or l l rad J2 3
1( ( ))� � ��

��  or l l rad J1 3
1( ( )).� � ��

��  Now by 
Theorem 5.5, l l J1 2

1( )� � ���  or l l rad J2 3
1( ( ))� � ��
��  or l l rad J1 3

1( ).� � ��
��

2. Let J  be a 2-absorbing hyperideal of . Let l l l� � � �1 2 3, , '  such that l l w J� �� � ��1 2 ( ).�  Then 
there exist l ii (1 3)� � �  such that � �( ) = , ( ) =1 1 2 2l l l l� � and η( ) = .3 3

'l l  Then � �( ) ( )1 2 3l l l J� � �  and so, 
( ) .1 2 3l l l J� � �  Since J  is 2- absorbing primary, we have l l J1 2� �  or l l rad J2 3 ( )� � �  or l l rad J1 3 ( ).� � �

Then � �( ) ( )1 2l l J� �  or � �( ) ( ( ))2l w rad J� � �  or � �( ) ( ( )).1 3l l rad J� � �  Then by Theorem 5.5, 
� � �( ) ( ) ( )1 2l l J� �  or � � �( ) ( ) ( ( ))2l w rad J� � �  or � � �( ) ( ) ( ( )).1l w rad J� � �  This shows that l l J� �� �1 2 ( )�  
or l l rad J� �� �2 3

' ( ( ))�  or l l rad J� �� �1 3
' ( ( )).�

The downward arrows in Figure 6 represent various possible generalizations obtained for the prime 
hyperideals in a join hyperlattice.

6. Conclusion
In this paper, we have considered join hyperlattices as a generalization of classical lattices. We have 
defined the classes of prime hyperideals viz., 2-absorbing, primary in a join hyperlattice and studied 
several properties. As future scope, we try to study various radical properties arising from the gener-
alized prime hyperideals in join hyperlattices. Furthermore, one can explore the hyperlattice aspects 
of essential elements in a lattice as discussed in [25]. In [26], authors studied the combinatorial 
aspects of superfluous elements in a lattice. One can discuss the notion of superfluous elements in a 
hyperlattice and obtain their possible connections to semiprime ideals in a hyperlattice.

Figure 6.
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explore the hyperlattice aspects of essential elements in a lattice as discussed
in [23]. In [22], authors studied the combinatorial aspects of superfluous
elements in a lattice. One can discuss the notion of superfluous elements in
a hyperlattice and obtain their possible connections to semiprime ideals in a
hyperlattice.
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