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1. Introduction

 Basically, quantum calculus is limitless classical calculus. It is sometimes called “h-calculus,” where 
“h” is Plank’s constant. Due to its widespread relevance in several subfields of mathematics and 
physics, quantum calculus has recently drawn the interest of many scholars. Jackson [1, 2] system-
atically explored q-derivative and q-integral after introducing them. The class of star-like functions 
was extended using quantum calculus by Ismail et al. [3]. Geometric characteristics of q-operators 
in certain classes of analytic functions were investigated by Mohammed and Darus [4]. Sahoo and 
Sharma [5] first defined the class of q-close-to-convex functions connected with q-derivative while com-
plex order q-starlike and q-convex functions were also studied by Seoudy and Aouf [6]. The geometric 
features of q-hypergeometric series are extensively studied by Agarwal and Sahoo [7]. The q-analogue 
of the Ruscheweyh differential operator was first described by Kanas and Raducanu [8], who then 
utilized it to create a new class of uniformly q-starlike functions and investigated several extremely 
important results in the context of the conic domain. Some of its applications for multivalent functions 
were described by Arif et al. [9, 10], while Zang et al. [11] examined q-starlike functions connected 
to the generalized conic domain. Srivastava et al. [12] presented the q-Noor integral operator and 
examined some of its applications; they also published a series of papers (see [13, 14, 15, 16, 17])  
that connected the class of q-starlike functions from various perspectives. Scholars and researchers 
working in these fields may also find Srivastava’s recent survey-cum-expository review the article [18] 
helpful. You may find the most recent studies on q-calculus in [19, 20, 21, 22].

Consider the function f of the form, and let us say that it belongs to the class   and every f ∈  in 
the open unit disc E = { : <1}τ τ  has the following form:
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Following the definition of Jackson q-derivative operator (or q-difference operator) [1] of a function 
f ∈  provided by (1.1) for 0 < <1q , we have:

q
'

f

f f q
q

f
( ) =

( ) ( )
(1 )

0

(0) = 0.
�

� �
�

�

�

�
�

��

�

�
��

�

�
�
�

for

for
(1.3)
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For f ∈  defined in (1.1) and using (1.3), we conclude that,

q
n

q n
nf n a E( ) =1 [ ] ,

=2

1� � �� �� �
�

�� (1.5)

where [ ]n q  is given by (1.2).
Schwarz functions f is said to be subordinate to g, represented in the form f g , if and only if w(0) = 0  

and | ( )|<1w τ , then f g w( ) = ( ( ))τ τ , where � �E . The above subordination is equal to f g(0) = (0) and 
f E g E( ) ( )⊂  if and only if the function g  is univalent in E .

Let   denote the class of analytic function p∈  with
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and �� �p( ) > 0�  in E.
The familier class ∗of starlike functions is defined as:
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Robertson in [23] introduced the class �( )�  of starlike of order β , � �1 as:
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If � �0,1),  then each function in class �( )�  is univalent, if β < 0, it may fails to be univalent.
Subordination is used to create a number of classes analytic functions whose image domains may 

be understood geometrically. When domains is like a right half plane [24], a circular disc [25], a conic 
domain [26, 27], a generalized conic domain [28], an oval domain and petal domain [29], a leaf domain 
[30], and a shell curve [31, 32, 33, 34], we obtain some interesting geometrical classes.

Recently Sokol [35] introduced the class SL∗  as follows:
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Malik et al. [36] developed and considered a new geometrical structure as image domain, and they 
were inspired by the idea of shell-like curves and the circular disc. Here we get inspiration from [36] 
and define a q-Lemniscate of Bernoulli and also define a new class of analytic functions using a quan-
tum difference operator, and for this class, an upper bound Fekete-Szegö problems and the second 
Hankel determinant are studied.

Let q∈ (0,1)  be given and let us consider the class 
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It is straightforward to verify that f S Qq� �( )  if and only if, 
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For q � �1 , then the class ∗( )Qq  reduces to the class SL∗  studied in [37]. Some properties of this class 
were investigated in [38, 39] for q � �1 .

Geometrical Interpretation

A function f Qq� � ( )  if and only if 
τ τ

τ

q f
f

( )
( )

 take all the values in the set

Q w w w qq = : > 0, 1 < .2� � �� �

The boundary of � � �Qq  is the right half of the q-Lemniscate of Bernoulli ( ) 2( ) = 12 2 2 2 2x y x y q� � � �  
and for q � �1 ,  Q1� �  is the Lemniscate of Bernoulli, for detail see [39]. It is important to note that 
when q � �1 , ∗ ∗( ) =Q SLq  studied in [38] and [39].

In 1976, the sth Hankel determinant was defined by Noonan and Thomas [40] as:
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where n ≥1 and s ≥1.
 (i) Fekete-Szegö functional is obtained when s = 2 and n =1.

H a a2 3 2
2(1) = −

and in its most basic form, this functional may be written as:

a a3 2
2 ,� �

where, � � , (see [41]).
 (ii) The following version of the second Hankel determinant was given by Janteng [42], and it has been 

examined by other scholars for several new classes of analytic functions:

H
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3 4
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For example, see [43] to learn more about the significance of the Hankel determinant in the study 
of singularities. The Hankel transform and its properties for integer sequences were discussed by 
Layman [44]. See [45] for more on how Hankel determinants are used to the study of meromorphic 
functions, and check out [39] for a variety of their features. Several academics are focusing more 
on finding sharp bounds for the Hankel determinants of a certain class of functions. Janteng et al. 
[42] found sharp problems for the second Hankel determinant of the subfamily ( , , )K R∗  of class   



Khan MF et al., Results in Nonlinear Anal. 6 (2023), 55–73. 59

univalent functions. Classes of starlike functions of order β  and strongly starlike functions of order 
β  were studied by Cho et al. [46], and the Hankel determinant was developed, along with the bounds 
for 2,2( )η  is bounded by 1 2

�� ��  and β 2. See [47, 48, 49, 50, 51, 52, 53, 54] for an example of current 
research on Hankel determinants. Recent work in [37, 35, 55] has explored the third Hankel determi-
nant results for a class of analytic functions associated with the right half of Lemniscate of Bernoulli. 
In this research, we extend their findings to a more extensive class of q-derivative and right-half-q-
Lemniscate of Bernoulli. 

2. Introduction

Our primary results will be shown using the following lemmas:

Lemma 1: [56]. Supoose p∈  and defined in (1.6). Then
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or one of its rotations. For the case where 0 < <1u , the above upper bound is sharp, but it may be 
further improved as shown below:
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p p2 1
2 2 (1, 2 1 ).� � �� �max

This result is sharp for

p p( ) = 1
1

( ) = 1
1

.
2

2�
�
�

�
�
�

�
�

�
�

and

Lemma 3: [57] Suppose p∈  and defined in (1.6), then 

p p p
2

1
2

1
2

=
2

(4 )
2

�
��



Khan MF et al., Results in Nonlinear Anal. 6 (2023), 55–73. 60

and
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for some τ  and ρ , we have � �1 and � �1. 

3. Main Result

Theorem 1: Let f Qq� � ( ) , and be of the form (1.1), then for complex µ ,

a a

q
q q

q
q

q3 2
2

1

1

4(1 )
1 1

2
1 < ,

1
2 1� �

�
� �

��

�
�

�

�
�

�
�
�

�
�
�

�� �
� ��

� � 



 � 
if 22,

2,4(1 )
1 1

2
1 >q

q
q
q q�
��

�
�

�

�
� � �

�
�
�

�
�
�

�

�

�
�
�
�
�

�

�
�
�
�
� � � 
if

where 

�1 = 4
1

1
4

1
8

1
2�� �

�
�

�
�

�

�
� �

�
�
�

�
�
�q

q
q

and

�2 = 4
1

1
2

1
8

1
4

.
�� �

� �
�

�
�

�

�
�

�
�
�

�
�
�q

q
q

Proof. Let f ∈  defined by (1.8), belong to the class ∗( )Qq , then

τ τ

τ
τ

q
q

f
f

Q
( )

( )
( ). (3.1)

Define p∈  as follows:

w p
p

( ) = ( ) 1
( ) 1

,�
�
�
�
�

then from (3.1), we have

τ τ

τ
τ

q
q

f
f

Q w
( )

( )
= ( ( )) (3.2)

Using (1.1), (1.6) and (1.8) and after some simplification, we obtain

Q w qp q p p qp

q p p p p

q ( ( )) =1
4

2
8 32

4 4

1 2 1
2

1
2

2

3 1 2 1
3

� � �� �
�

�
�

�
��

�

�
��

�
� �

116
2

32
1 2 1

3
3�

�
��

�

�
�� �

��

�
��

�

�
��

�
�
�

��

�
�
�

��
�q p p p

� 

(3.3)



Khan MF et al., Results in Nonlinear Anal. 6 (2023), 55–73. 61

and

� �

�
� �

q f
f

qa q q a qa

q q q a q q a

( )
( )

=1 1 )

1 2

2 3 2
2 2

2
4

� � � �

� � � � �

{ ( ) }

{ ( ) ( ) 22 3 2
3 3 .a qa� �}� 

(3.4)

From equations (3.2), (3.3) and (3.4), we obtain
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which together implies,

a a
q
p q

q
q

p3 2
2

2 1
2= 1

4 1
1
2

1
8

1
4

1
4

.�
�� �

� � �
�

�
�

�

�
� �

�� ��
�
�

��

�
�
�

��
� � (3.8)

By using lemma 1 on (3.8), we obtain the required result.
For sharpness consider the functions f E1 : →   such that 
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This completes the proof. 
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Corollary 1: [35, 37] Let q � �1  and f SL� � be of the form (1.1). Then for complex µ , 
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Applying the Lemma 2 on (3.12), we obtain the required result. 

Corollary 2: [37]. Let q � �1  and f SL� � defined by (1). Then
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�
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(3.15)
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Now
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F p( , ) > 0,�
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 proving that, inside the range [0,1], F p( , )ξ  is an increasing function, therefore 

maximum attains at ξ =1  and Max F p F p G p( , ) = ( ,1) = ( )ξ  with
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It is clear that ′′G (0) < 0,  so G  has Max at p = 0  and

G

q

q(0) = 4

= 1
4 1

.2



�� �
Hence from (3.15), we have

a a a
q

2 4 3
2

2
1

4 1
.� �

�� �

Corollary 3: [37, 35]. For q � �1 , f SL� � and be of the from (1.1), then

a a a2 4 3
2 1

16
.� �

Theorem 4: Let f S Qq� �( )  and be of the from (1.1), then

a a a
q q2 3 4 2
1

2 1
.� �

� �� �

Proof. From equations (3.5), (3.6) and (3.7), we have

a a a K p p L p M N pq q q q2 3 4 1 2 3 1
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By using Lemma 3 and assume that p > 0  and taking p p1 = 0,2],∈  we obtain

a a a K p p p

L
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By applying the triangle inequality and replace ρ  by ξ  and � �1, we have

a a a

K M N p
K

p p
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p p
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q q q
q q q
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(say).

(3.16)

Now
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(4 ) (4 ) .2 2 2 2�
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Clearly, �
�

T p( , ) > 0,�
�

 proving that, inside the range [0,1], T p( , )ξ  is an increasing function, therefore 

maximum occurs at ξ = 0  and max T p p G p( , ) = ( ,0) = ( )1ξ  with

G p K M N p
L

p
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pq q q
q q

1
3 2 2( ) =

4 2
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q q q
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q q q
q

1
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1
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( ) = 6
2

.

It is clear that G
''
1 (0) < 0, so G p1( )  has Max at p = 0 , we have

G
q q1 2

(0) = 1
2 1

.
� �� �

Hence from (3.16), we obtain

a a a
q q2 3 4 2
1

2 1
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� �� �
For sharpness, consider the function f E3 : →   such that 

� �

�
�

q f
f

q2

2

3( )
( )

= 1 �

and 

f q

q
3

4( ) =
2 [4] 1

.� � ��
�� �

� (3.17)
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Now 

a a a q
q qq

2 3 4 2
= = 0, =

2 [4] 1
= 1

2 1
.

�� � � �� �
Hence we have the required result. 

Corollary 4: [37, 35]. For q � �1  and for f SL� � be of the from (1.1), then

a a a2 3 4
1
6

.� �

Theorem 5: Let f S Qq� �( )  and defined by (1.1), then for n ≥ 2

n a a k kq n
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where, � = 2 1.�  

Proof. First note that from (1.8), we have
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where, for � �E, w(0) = 0  and | ( )|<1w τ , and
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k

k
k( ) = .
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� �

�

� (3.19)

Thus, we obtain
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From (1.1) and (3.19), we have
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it may also be expressed as:

k

n

q k
k

k n
q k
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k n
k a k a w k

=1 = 1 =
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We now write using Clunie and Keogh’s technique [58]:

k

n

q k
k

k n
k
k

k

n

q k
kk a b w k a

=1 = 1 =1

1
1 = ( ) 1� � ��� �� �� � � � �� ��� �

�

� �

� � � � � ,, (3.20)

for some bk , with n k� � �1 < . This allows us to write down an expression for bk  in terms of the coef-
ficients ak  and pk :

b k a k c ak q k
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Taking modulus of (3.20), we have
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is an analytic function in the unit disc. Parseval’s Theorem (see, for instance [59]) gives
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0 < <1r  is true for every r . When we do an integration from 0  to 2π  with regard to, we get
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and this leads to
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which completes the result. 
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Corollary 5: Let f Qq� � ( )  and be of the from (1.1), then for n ≥ 2

a
nn

q

�
�

�� �� �
2 2

1
, (3.21)

Proof. From (3.18), we have
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�
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which leads to the desired result (3.21). 

Corollary 6: [35]. For q1 − , f SL� �  and be of the from (1.1), then for n ≥ 2

n a a k kn
k

n

k�� � � �� � � �� �� �
�

�1 1 1 ,2 2

=1

1
2 2 2

�

where � = 2 1.�  

Corollary 7: [35]. For q1 − , f SL� �  and be of the from (1.1), then for n ≥ 2

a
nn �
�
�

2 2
1

, (3.22)

where � = 2 1.�  

3.1 Applications of Ruscheweyh q-differential operator

The Ruscheweyh q-differential operator was defined by Kanas and Raducanu [8] using the q-differ-
ence operator.

For f ∈,

q qf f F E�
�� � � � �( ) = ( ) ( ) ( > 1, ),, 1� � �� (3.23)

where
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We note that

q
q

q
qF f f

� �
� �

� � ��
�

�1
, 1 1

1
1( ) =

(1 )
, ( ) = ( )

(1 )
.lim lim� �

�
��

�
�

� �
�
�



Making use of (3.23) and (3.24), we have
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� )), (3.25)
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where

�
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q

q q

n
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.
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� �

�

�
(3.26)

From (3.25), we get

 q q qf f f f0 1( ) = ( ), ( ) = ( ).� � � � ��

In general 
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Also, we have
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1
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Now, applying Theorem 1 to the function , defined by Eq (3.27), the results are as follows::

Theorem 6: Let  belongs to the class S Qq
∗( )  and be given by the equation (3.27), then for a complex µ
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Next, applying Theorem 2 to the function , defined by Eq (36), the results are as follows:

Theorem 7: Let  belongs to the class S Qq
∗( )  and be given by the equation (3.27), then for a complex v1
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where

v q
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Again, applying Theorem 3 to the function , defined by Eq (3.27), the results are as follows:

Theorem 8: Let  belongs to the class S Qq
∗( )  and be given by the equation (3.27), then

a a a q

q

2 4 3
2

2

3

2
4 3 1

.� �
�� �� �� ��

Applying Theorem 4 to the function , defined by Eq (3.27), the results are as follows:

Theorem 9: Let  belongs to the class S Qq
∗( )  and be given by the equation (3.27), then

a a a q

q

2 3 4
42 4 1

.� �
�� �� �� ��

Finally applying Theorem 5 to the function , defined by Eq (3.27), the results are as follows:

Theorem 10: Let  belongs to the class S Qq
∗( )  and be given by the equation (3.27), then, for n ≥ 2

n a a k kq n n
k

n

k k q k q�� �� �� � � �� �� �� � � �� �� �� ��
�
�

�

�� � �1 1 1
2 2

=1

1
2 2 2

� ��
�
�

,

where � = 2 1.�  

4. Conclusion

In our investigation, by using q-differential operator we introduced new class S Qq
∗( )  and investi-

gated upper bound for second Hankel determinant of analytic functions related with q-Lemniscate of 
Bernoulli ( ) 2( ) = 1.2 2 2 2 2x y x y q� � � �  Also we investigated Fekete-Szegö problems and other coeffi-
cient of the analytic functions belonging to the class S Qq

∗( ) . Further we discussed some special cases 
of our results. Finally, we addressed several novel applications of our major discoveries using the 
Ruscheweyh q-differential operator. 
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