
Results in Nonlinear Analysis 6 (2023) No. 3, 1–18 
https://doi.org/10.31838/rna/2023.06.03.001 
Available online at www.nonlinear-analysis.com

Received May 9, 2023; Accepted June 24, 2023; Online July 20, 2023

A modified subgradient extragradient method  
for equilibrium problems to predict prospective 
mathematics teachers’ digital proficiency level
Raweerote Suparatulatorna, Watcharaporn Cholamjiakb, Nipa Jun-onc

aDepartment of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; bSchool of Science, University of 
 Phayao, Phayao 56000, Thailand; cDepartment of Mathematics, Faculty of Science, Lampang Rajabhat University, Lampang 52100, 
 Thailand.

Abstract
Numerous research in the field of education analytics has attempted to discover a significant indi-
cator and predictor of the digital proficiency level of pre-service teachers. While university course 
alterations in their academic performance are perceived as ordinary, significant fluctuations in their 
academic performance in courses related to digital technology may require further investigation and 
consideration, particularly regarding their digital proficiency level. However, such a method is prob-
lematic due to the complexities of describing digital academic paths. In this paper, we modify the 
extragradient method with an inertial extrapolation step and viscosity-type method to solve equilib-
rium problems of the pseudomonotone bifunction operator. Under the assumption that the bifunction 
satisfies the Lipchitz-type condition in real Hilbert spaces, we obtain strong convergence theorem. 
Next, we apply our algorithm to classify the digital proficiency level of pre-service teachers in order to 
investigate the correlation between academic achievement in digital technology-related courses and 
digital proficiency level. Finally, we establish several situations in which the digital proficiency level 
of pre-service teachers might either increase or decrease.
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1. Introduction

Digital technologies are regarded not only as instruments for working and studying but also as tools 
for social involvement. Mathematics teachers must build their own and their students’ digital abili-
ties due to the pervasiveness of digital technology in our society and prevent the continued widening 
of the digital divide [1]. At the same time, the vulnerability of primary education in mathematics has 
been identified concerning the alarmingly low technical competency at lower educational levels [2]. In 
the COVID-19 pandemic period, the complicated demands and current deficiencies in this sector have 
become readily apparent.

The COVID-19 pandemic touched all levels and aspects of education, including teacher prepara-
tion and professional development [3, 4]. To cope with emergency distance learning and teaching, 
both teacher educators and pre-service teachers had to overcome difficult technological, pedagogical, 
social, cognitive, and practical hurdles [5, 6]. Teacher preparation institutions were obliged to con-
struct new infrastructure and learning environments and adapt to new teaching techniques, learning 
situations, and study materials. Moreover, pre-service teachers as prospective teachers were required 
to strengthen their digital skills in order to meet all the new obstacles.

Particularly, to fully realize the benefits of digital technology in the mathematics classroom [7], 
prospective mathematics teachers need substantial preparation and training. Consequently, the most 
recent prospective mathematics teacher preparation requirements involve incorporating digital tech-
nology into mathematics instruction to generate competent potential mathematics teachers [8]. Using 
legitimate classification technique to evaluate the digital proficiency level of prospective mathematics 
teachers offers a practical foundation for eligibility into the profession [9, 10].

This paper studies the equilibrium problem (EP), initially introduced by Muu and Oettli [11]. The 
problem EP is to find an element z* in a nonempty closed convex subset C of a real Hilbert space  
such that

f z y y C( , ) , ,* ����� � �0 (1.1)

where f C C: � �   be a bifunction with f x x( , ) = 0  for all x ∈ , and EP C f( , )  is denoted for a solution 
set of EP (1.1).

Inspired by the modified algorithm to solve variational inequalities of Korpelevich [12] which is 
called extragradient method (EM), Tran et al. [13] proposed the two-step extragradient method (TSEM) 
for solving EP (1.1). The weak convergence was proved under the standard condition; the control 
stepsize µ  needs to belong in the control interval, making the bifunction f Lipschitz. However, in the 
process of the two-step, extragradient method [13], projection onto nonempty closed convex set C was 
used in two steps for each iteration. It isn’t straightforward and can affect the method’s efficiency if C 
has a complex structure. This method is defined x0 ∈ and x C1 ∈  and
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A natural question that arises in the case of infinite dimensional Hilbert spaces is how to design 
an algorithm that uses easier and provides strong convergence. This question was made clearly by 
Hieu [14] with Halpern subgradient extragradient method (HSEM), which was modified from the 
HSEM of Kraikaew and Saejung [15] for variational inequalities. This method is defined by u∈  and
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where µ  is still some constant depending on the interval that makes the bifunction f satisfies the 
Lipschitz condition and { } ( , )�n � 0 1  which satisfies the principle conditions

lim ����
n n

n
n�

�

� ���

�

� � �0
1

, . (1.4)

Another famous method that makes the algorithm converge strongly is the viscosity approxima-
tion method which was introduced by Moudafi [16]. Using the Moudafi [16]’s idea, Muangchoo [17] 
combined a viscosity-type method with the extragradient algorithm for obtaining strong convergence 
theorem of the EP (1.1) such that f is pseudomonotone. This method is defined by
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2 1 and � �1 2,  are Lipschitz constants of f.

Another way to study the convergence of algorithms is to find a method that makes algorithms 
converge faster. Polyak [18] first introduced the inertial technique in 1964 for convergence speed up. 
This algorithm was generated for solving convex minimization. Shehu et al. [19] recently modified 
the inertial technique with the Halpern-type algorithm and subgradient extragradient method for 
obtaining strong convergence to a solution of EP f C( , )  such that f is pseudomonotone. The step-sizes 
{ }µn  is developed by updating the step-sizes method without knowing the Lipschitz-type constants of 
the bifunction f. This method is defined by u∈  and
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� � ( , )0 1  and { }ηn  still satisfies the principle conditions (1.4). This update step-size { }µn  is limited in 
the computation and can not be modified in another way.

Inspired by the previous works, we introduce a new modified subgradient extragradient method for 
obtaining strong convergence to a solution of EP f C( , )  using viscosity-type methods. In applications, 
we apply our algorithm to solve the classification problem of pre-service teachers’ digital proficiency 
level using a dataset of 474 pre-service mathematics and sciences teachers responsible for mathe-
matics classrooms in their school practicum from five cohorts. Pre-service teacher data using nine 
attributes, including major; gender; type of supplementary digital technology training courses (short, 
medium, and long format); grade point of Information Technology for Learning course; grade point of 
Innovation and Information Technology course; grade point of Digital Technology for teaching math-
ematics course; Grade Point Average (GPA); and digital proficiency level.

2. Preliminaries

2.1 Digital proficiency level

This study measured the digital proficiency level of participants based on DigCompEdu framework [20] 
that classify pre-service teachers into six levels as the following.

(A1) Newcomer: Newcomers know the potential of digital technology to enhance educational and 
professional activity. However, they have minimal experience with digital technologies and utilize 
them primarily for lesson planning, administration, and organizational communication. Newcomers 
require direction and support to extend their repertoire and use their present digital skills in the 
instructional sphere.

(A2) Explorer: Explorers are conscious of the possibilities of digital technologies and are eager to 
explore them in order to improve educational and professional practice. They have begun adopting 
digital technology in certain areas of digital competency without a consistent strategy. Explorers need 
encouragement, insight, and inspiration, such as via the direction and example of colleagues, as part 
of a cooperative sharing of practices.

(B1) Integrator: Integrators experiment with digital technology in many situations and for various 
goals, incorporating them into many of their activities. They use them inventively to increase multiple 
parts of their professional involvement. They are keen to extend their practicing repertoire. However, 
they still attempt to comprehend which tools perform best in specific contexts and to adopt digital 
technology to pedagogical ideas and practices. To become experts, Integrators need additional time for 
exploration and contemplation, along with collaborative support and information sharing.

(B2) Expert: Experts skillfully, creatively, and critically employ various digital technologies to better 
their professional tasks. They pick digital technology for specific scenarios and attempt to compre-
hend the advantages and disadvantages of different digital tactics. They are inquisitive and receptive 
to new ideas, understanding there are many items they have not yet tried. They use experimentation 
to broaden, organize, and consolidate their repertory of techniques. Regarding innovative practice, 
experts are the cornerstone of every educational organization.

(C1) Leader: Leaders use digital technology consistently and comprehensively to improve pedagogical 
and professional activities. They depend on an extensive repertory of digital tactics, from which they 
can choose the best applicable for every circumstance. They continually reflect on their procedures 
and strive to improve them. Through interaction with peers, they remain current on new advances 
and ideas. They serve as a source of motivation for those to whom they impart their knowledge.

(C2) Pioneer: Pioneers challenge the sufficiency of current digital and educational methods, of which 
they are Leaders. They are worried about the limitations or disadvantages of these techniques and are 
motivated to reinvent education even more. Pioneers explore extremely innovative and complicated 
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digital technology or build new instructional strategies. They are distinct and uncommon types, inno-
vators, and role models for younger educators.

In this paper, we left out the C2 level since it needs longitudinal experiences in a teaching career 
and is a unique and rare type of teacher. Thus, the class that we want to predict by our method will 
include only from (A1) Newcomer to (C1) Leader level.

2.2 Mathematical background

In what follows, recall that  is a real Hilbert space. Let C be a nonempty, closed and convex subset of 
. We denote ⇀ and → as weak and strong convergence, respectively. We next collect some necessary 
definitions and lemmas for proving our main results. For u∈ , define the metric projection PC from 
 onto C by

P u arg u vC v C
: .� �

�
� �min

It has been known for the fact that PC can be distinguished by the inequality

� � � � �u P u v P uC C, 0 (2.1)

for any u∈  and v C∈ . Next, the following equalities and inequality are valid for inner product 
spaces. Assume u v, ∈ ,

u v u v u v� � � � � �
2 2 2 , , (2.2)

au a v a u a v a a u v� � � � � � � �( ) ( ) ( )1 1 12 2 2 2 (2.3)

for any a∈ .
A normal cone of C at x C∈  is defined by

N x z z y x y CC ( ) { : , , }.� � � � � � � 0 ��forall��

Let g C: →   be a convex function and subdifferential of g at x C∈  is defined by

� � � � � � � � �g x z g y g x z y x y C( ) { : ( ) ( ) , , }. ��for all��

A bifunction f : � �   on C is stated to be
 i. pseudomonotone if f u v f v u u v C( , ) ( , ) , ,� � � �0 0 ��for all�� ;
 ii. satisfies the Lipschitz-like criteria for some � �1 2 0, > , the following inequality is satisfied

f u w f u v f v w u v v w u v w C( , ) ( , ) ( , ) , , , .� � � � � � �� � � � � �1
2

2
2 ��for all��

Lemma 2.1: [21] Let g C: →   be a subdifferentiable, convex and lower semi-continuous function on 
C. An element x C∈  is a minimizer of a function g if and only if

0�� �g x N xC( ) ( ),

where ∂g x( )  stands for the subdifferential of g at x C∈  and N xC ( ) the normal cone of C at x.

Lemma 2.2: [22] Let { }an  and { }cn  be nonnegative sequences of real numbers such that 
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let { }bn  be a sequence of real numbers such that lim supn nb� �� 0. If for any n∈  such that
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where { }γn  is a sequence in (0, 1) such that 
n

n
�
� �

1

�

� �� , then limn na� �� 0.



Suparatulatorn R et al., Results in Nonlinear Anal. 6 (2023), 1–18. 6

Lemma 2.3: [23] Let { }Γn  be a sequence of real numbers such that there exists a subsequence { }�n jj �  
of { }Γn  satisfying � �n nj j

� �1 for all j∈ . Define a sequence of integers { ( )}� n n n� *  by

� ( ) : { : }.n k n k k� � � �max � � 1 (2.4)

Then { ( )}� n n n� *  is a nondecreasing sequence such that limn n� ��� �( ) , and for all n n≥ * , we have that 
� �� �( ) ( )n n� �1 and � �n n� �� ( ) 1.

3. Main result

To study the convergence analysis, consider the following conditions.

( )1  The solution set EP f C( , )  is nonempty and f is pseudomonotone on C;
( )2  f meet the Lipschitz-like condition on  through �1 0>  and �2 0> ;
( )3  f z( , )⋅  is subdifferentiable and convex on  for each fixed z∈ ;
( )4  limsup *

n nf z y f z y� �� ( , ) ( , )  for each y C∈  and { }z Cn ⊂  satisfies zn⇀z*.
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Iterative Steps: Construct { }xn  by using the following steps:

Step 1. Set

� � � � �n n n n n n n nx x x x� � � � � � �( ) ( ) ( )1 1

where � :�   is a differentiable function such that ��  is contraction with constant � �[ , )0 1 .

Step 2. Compute
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If �n ny� , then stop. Otherwise
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where w f yn n n��2 ( , )�  satisfying � �n n n n C nw y N y� � � ( )  and construct a half-space

 n n n n n nz w y z y� � � � � � � �{ : , }.� � 0

Replace n by n +1 and then repeat Step 1.
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Lemma 3.1: Let �n ny�  in Algorithm 1, then �n EP f C� ( , ) .

Proof. By the definition of yn  with Lemma 2.1, we have

0 1
22

2�� � � � ��

�
�

�

�
� �� � �n n n n C nf y N y( , ) ( ) ( )� �

Thus, we can write � �n n n n nw y w� � � � � 0, where �w f yn n n��2 ( , )�  and w N yn C n∈ ( ) . Due to �n ny�  
implies that �n n nw w� � � 0. Thus, we have

�n n n n nw y y w y y� � � � � � � �� , , 0

for all y C∈ . By w N yn C n∈ ( )  implies � � � �w y yn n, 0  for all y C∈  and through above expression, we 
obtain

�n n nw y y� � � �� , 0 (3.1)

for all y C∈ . Due to �w f yn n n��2 ( , )�  and using the subdifferential definition, we obtain

� � � � ��w y y f y f yn n n n n, ( , ) ( , )� � (3.2)

for all y C∈ . From the inequalities (3.1) and (3.2) with 0 � �� �n  implies that f yn( , )� � 0 for all y C∈ ,  
that is, �n EP f C� ( , ) .

Suppose that f : � �   meet the items ( ) ( ) 1 3− , we have

� � � � � � � � � �x y y xn n n n n n n n� �� � � � � � � � �1
2

1
2

2 1
2 21 2 1 2� � � � � �( ) ( ) (3.3)

for all � �EP f C( , ).

Proof. Let � �EP f C( , ), then by using Lemma 2.1, we have

0 1
22
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1 1�� � � � ��
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�

�

�
� �� �� �n n n n nf y x N x

n
( , ) ( ) ( )� � 

Thus, we can write � �n n n n nw x w� � � � ��1 0 , where �w f y xn n n�� �2 1( , )  and w N xn nn
� � ( )1 . This implies 

that

� � � � � � � � � � � �� � � �� �n n n n n n n nx y x w y x w y x1 1 1 1, , ,�

for all y n∈ . Given that w N xn nn
� � ( )1  then � � � ��w y xn n, 1 0 for all y n∈ . Therefore, we have

� � � � � � � �� � �� �n n n n n nx y x w y x1 1 1, ,� (3.4)

for all y n∈ . Since �w f y xn n n�� �2 1( , ) , we have

� � � � �� ��w y x f y y f y xn n n n n, ( , ) ( , )1 1 (3.5)

for all y∈ . From (3.4) and (3.5), we get

� � � � � �� � �� � �n n n n n n n nx y x f y y f y x1 1 1, ( , ) ( , ) (3.6)

for all y n∈ . Substituting y ��  in (3.6), we obtain

� � � � � �� � �� � � � �n n n n n n n nx x f y f y x1 1 1, ( , ) ( , ). (3.7)

Given � �EP f C( , ) imply that f yn( , )� � 0  and owing to the item ( )1  gives that f yn( , )� � 0 . Thus, we 
obtain

� � � � �� � �� � �n n n n n nx x f y x1 1 1, ( , ). (3.8)
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Following the condition ( )2 , we have

f y x f x f y y y xn n n n n n n n n n( , ) ( , ) ( , ) .� � �� � � � � �1 1 1
2

2 1
2� � �� � � � � � (3.9)

Combining (3.8) and (3.9), we get

� � � � � � � � �� � �� � � � � � � � �n n n n n n n n n n n n nx x f x f y y1 1 1 1
2

2, ( , ) ( , ) � � � � �� �y xn n� �1
2 . (3.10)

By using the half-space definition, we have � � � � � ��� �n n n n n nw y x y, 1 0 , which implies that

� � � � � � � �� �� �n n n n n n n ny x y w x y, , .1 1 (3.11)

Since w f yn n n��2 ( , )� , we obtain

� � � � �w y y f y f yn n n n n, ( , ) ( , )� �

for all y∈ . By replacing y xn� �1 , we obtain

� � � � �� �w x y f x f yn n n n n n n, ( , ) ( , ).1 1� � (3.12)

It follows from inequalities (3.11) and (3.12) that

� � � � � �� �� � � � �n n n n n n n n n ny x y f x f y, ( , ) ( , ).1 1 (3.13)

From (3.10) and (3.13), we have
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Now, we obtain the following equalities:
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2

1
2

1
2

1 12 ,

and

� � � � � �� � �n n n n n n n n n ny x y x y x y� � � � � � � � � �� � �
2

1
2

1
2

12 , .

Combining the above equalities with expression (3.14) finalizes the proof.

Lemma 3.3: Assume that the items ( ) ( ) 1 4−  hold. If there is a subsequence { }ρnk  of { }ρn  such that 
�nk x* * �  and

lim lim lim
k n n k n n k n nk k k k k k

y x x y
� � � � �� � � � � �
� � �

� �� � � � � �1 1 0. (3.15)

Then x EP f C* ∈ ( , ) .

Proof. From y Cn ∈ , ρnk x* *  and limk n nk k
y� � �� �� � 0 , we get y x Cnk

* * ∈ . This follows from 
limk n nx y

k k� � � �� � �1 0  that the subsequence { }xnk +1  is bounded. For any y n∈ , using (3.6), (3.9) and 
(3.13), we have

� � �

� �

n n n n n n n n

n n

k k k k k k k k

k k

f y y f y x x y x

f x

( , ) ( , ) ,

( ,

� � � � � �

�

� � �1 1 1

nn n n n n n n n n nk k k k k k k k k k
f y y y x� �� � � � �1 1

2
2 1

2) ( , )� � � � �� � � � � �

������ � � � �

� � � � � � � � �

� �

� �

�

� �

n n n

n n n n n n n

k k k

k k k k k k k

x y x

y x y x y x
1 1

1 1

,

, , ��

�

� � �

� �

1 1
2

2 1
2

� � �

� � �

� �

�

n n n

n n n

k k k

k k k

y

y x���� .
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This implies by (3.15) and the boundedness of { }xnk +1  that the right hand side tends to zero. Due to 

0 1
2

1
21 2

� � �
�
�
�

�
�
�

� �nk
min

� �
, , the condition ( )4 , and y xnk

* *, we obtain 0� ��lim sup *
k nf y y f x y

k� ( , ) ( , )  

for all y n∈ . Since C n⊂  , we get f x y( , )* ≥ 0 for all y C∈ , that is, x EP f C* ∈ ( , ) .
With the above results we are now ready for the main convergence theorem.

Theorem 3.4: Let the sequence { }xn  generated due to Algorithm 1 and the items ( ) ( ) 1 4−  are satis-
fied. Then, { }xn  converges strongly to � � �� �PEP f C( , ) ( )� .

Proof. Let � �EP f C( , ). From limn
n

n
n nx x� �� ��

�
�
� �1 0 , we get

� �n n n nx x M� �� ��1 0 (3.16)

for some M0 0> . Since ��  is contraction with constant � �[ , )0 1  and using (3.16), the following rela-
tion is obtained:

� � � � � � � �

�

� � � � � � � �

� � �
n n n n n n n n

n n

x x x x
x

� � � � � � � � �

� � ��
�( ) ( )

( ) (
1 1

�� � � � � � � �

� � � � �

) ( ) ( )
( ) ( ( )

� � � � �

� � �

� � � � � � �

� � � � � �
n n n n

n n n

x M
x

1
1

0

��

� � �

�

�

� �

� �

�

� � � �

� �

M
x M
x M

n n n

n

0

1

1

1
)

( )
, ,max{ }

(3.17)

where � � �n n� �( )1  and M M
1

0

1
�

� � �
�

� �� � �
�

( ) . By 0 1
2

1
21 2

� � �
�
�
�

�
�
�

� �n min
� �
,  with expression (3.3) 

implies that

� � � �xn n� � � �1 � � � . (3.18)

This leads to a conclusion that � � � �x x Mn� � � �� �1 1 1� �max ,  for any n∈ . Consequently, the 
sequence { }xn  is bounded. In addition, { ( )}�� xn  is also bounded. Since f  satisfies the conditions 
( ) ( ) 1 4− , we have that the solution set EP f C( , )  is closed and convex, see [13]. Hence, PEP f C( , ) ���  
is a ρ -contractive mapping. Now, we can uniquely find � �EP f C( , )  with � � �� �PEP f C( , ) ( )�  due to the 
Banach fixed point theorem. By (2.1), we also get that for any y EP f C∈ ( , ),

�� � � � �� � � �( ) , .y 0 (3.19)

Now for each n∈ , set �n nx:� �� �� 2 . Applying (3.17), we have

� � � �

� �

� � � � �

� � � �
n n n n

n n n n n

x M
M x

� � � � �

� � � � � �

2
1
2

2
1

1
1 2 1
( )

(
( )
( ) ( )� ��

�
n

n n

M
M

1
2

2

)
� ��

for some M2 0> . This follows from (3.3) that

( ) ( )1 2 1 21
2

2 1
2 2

1

1

� � � � � � � �

� �
� �

�

� � � � � � � �� � � � �n n n n n n n n

n n

y y x �

� � �� �nM2.
(3.20)
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Case a. We can find N ∈  satisfying that for all n N≥ , the inequality � �n n� �1  holds. This 
together with the boundedness of { }Ξn , it is convergent. Due to the fact that limn n� ��� 0 and 

0 1
2

1
21 2

� � �
�
�
�

�
�
�

� �n min
� �
, , and by (3.20),

lim lim
n n n n n ny y x
� � �� � � �
� �

�� � � �1 0, (3.21)

which implies

lim
n n nx� �� �

�
�� �1 0. (3.22)

From the definition of ρn , the inequality (3.16) and limn n� ��� 0 , we have

� � � � � �

� �

� � � �

� �
n n n n n n n n

n n n

x x x x x
x x M

� � � � � �

� � � � �
�( )

( ( ) )
1

0 0����aas����n�� . (3.23)

This together with (3.22) implies that

lim
n n nx x
� � � �
�
� �1 0. (3.24)

Next observe that, for the reason that { }xn  is bounded, there is x* ∈  such that x xnk
* *  as k ��  for 

some subsequence { }xnk  of { }xn . By (3.23), we get ρnk x* * as k �� . Then Lemma 3.3 together with 
(3.21) and (3.22) implies that x EP f C* ∈ ( , ) . From (3.19), it is straightforward to show that

lim sup lim *

n
n k nx x x

k
� �

�� � � � � �� � � � � �� � �
� �

� � � � � � � � � � �( ) , ( ) , ( ) , ��� � 0.

This combining with (3.24) finds that

lim sup lim sup lim su
n

n
n

n nx x x
�

�
�

��� � � � � �� � � � �
� �

� � � � � � �( ) , ( ) ,1 1 pp
n

nx
�

�� � � � �
�

� � � �( ) , .0 (3.25)

Hence, from the assumption on �� , (2.2) and (2.3), we obtain

ž n n

n n n n n n n nx x x x
�

�

� �

� � �� � � � � � �
1

2

11
� �

�

� �

� � � � � � � �( ( ) ( )) ( )( ) ( ) (( ( ) )
( ( ) ( )) ( )( ) (

� �

� � �� � � � � � � �

� � �

� � � � � � �

�

� �

2

2
11 2n n n n n n nx x x x )) ( ( ) ),

( ) ( ) ( )
� � � � �

� � �� � � � � �
�� � � � �

� � � � � �
n n

n n n n n n

x
x x x

1
2 1 2� � � nn n n n

n n n n n n n

x x
x x

� � �� � � �� � � �

� � � � �
1 1 1

2

2
1 2

, ( ) ,
( )

� � � � � �

� � � �� � � �� � �� � �� � � �

� � � � �

1 1 12

1 2

� � �

�

x x

x

n n n

n n n n n
n

n

� � � � � �

� � � �
�
�

( ) ,

( )� � nn n n n n

n n n
n

n
n

x x x

M x

� � � �� � � �

� � � �

� � �1 1 1

3

2

1

� � �

�

� � � � � �

� �
�
�

( ) ,

( )� xx xn n� ��
�

�� � � �
�

�
�




�
�1 1

2
1

�
�

� � � �( ) ,

(3.26)

for some M3 0> . Applying this to the inequality (3.25) with Lemma 2.2, we can conclude that 
limn n� ��� 0.

Case b. We can find a subsequence { }Ξnj  of { }Ξn  such that � �n nj j
� �1 for all j∈ . According to 

Lemma 2.3, the inequality ž ž� �( ) ( )n n� �1  is obtained, where � :  �  is defined by (2.4), and n n≥ *  
for some n* ∈. This implies, by (3.20), for all n n≥ * , that

( ) ( )( ) ( ) ( ) ( ) ( ) ( )1 2 1 21
2

2 1
2� � � � � ��� � � � � �� � �� � � � � � �n n n n n ny y x � (( ) ( ) ( ) .n n n M� ���� ��1 2



Suparatulatorn R et al., Results in Nonlinear Anal. 6 (2023), 1–18. 11

Similar as in Case a, since �n � 0  as n �� , we obtain

lim lim
n n n n n ny y x
� � �� � � �
� � � � � ��� � � �( ) ( ) ( ) ( ) .1 0

Furthermore, an argument similar to the one used in Case a shows that

lim sup
n

nx
�

��� � � � �
�

�� � � �( ) , .( ) 1 0

Finally, from the inequality � �� �( ) ( )n n� �1 and by (3.26), for all n n≥ * , we obtain

� �� � � �
�

�
� �� �

�

�( ) ( ) ( ) ( )
( )

( )
( ) ( )( )n n n n

n

n
n nM x x� � �� � � � �1 1 3 11 � �

22
1 1�

�� � � �
�

�
�
�

�

�
�
�

��

 � � ��( ) , .( )x n

Some simple calculations yield

��
�

�
� � �

�

� �
� � � �( )

( )

( )
( ) ( ) ( )( ) ,n

n

n
n n nM x x x� � �� � �

�
�� � �1 3 1 1

2
1

� � ��.

 This follows that lim supn n� � �� �� ( ) 1 0. Thus, limn n� � �� �� ( ) 1 0 . In addition, by Lemma 2.3,

lim lim
n n n n� � �� �

� � �� � ( ) .1 0

Therefore, we can conclude that xn ��  as n �� .

4. Application to Educational Data Classification Problem

0.7 cm The educational dataset classification displayed in this application is pre-service teachers’ dig-
ital proficiency level identifying as A1, A2, B1, B2 and C1. According to DigCompEdu framework [20], 
digital proficiency levels of prospective mathematics teachers were classified in this study: Newcomer 
(A1), Explorer (A2), Integrator (B1), Expert (B2), and Leader (C1).

We next give the concept of an extreme learning machine (ELM) [24] for applying our proposed 
algorithm to solve ..... prediction. We start by letting  : {( , ) : , , , ,..., }� � � �x b x b n Gn n n

M
n

N  1 2  as a 
training set of G distinct samples where xn is an input training data and bn is a target. For each output 
layer of ELM for single-hidden layer feed forward neural networks (SLFNs) with m hidden nodes and 
activation function A is

O w A a c xn
j

m

j j j n�
�
�
1
( ( , , ),

where aj and cj are parameters of weight and finally the bias, respectively. To find the optimal output 
weight wj at the j-th hidden node, then the hidden layer output matrix A is generated as follows:

A
A a c x A a c x

A a c x A a c x

m m

G m m G

�
�

�

�

�

�
�
�

�

�

( , , ) ( , , )

( , , ) ( , , )

1 1 1 1

1 1

� � � ��
�
�
.

For finding the optimal weight vector w w wT
m
T T= [ ,..., ]1  which satisfies Aw B=  where B t tT

G
T T= [ ,..., ]1  

is the training target data. This problem can be solved by the least square problem when the Moore-
Penrose generalized inverse of the matric A can not be fined easily. For ovoid overfitting in the machine 
learning, we use least square regularization. This problem can determine as the following convex 
minimization problem:

min
w m

Aw B w
�

� �

{ },� � � �2

2
1� (4.1)
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where λ  is a regularization parameter. This problem is called the least absolute shrinkage and selec-
tion operator (LASSO) [25]. For applying our algorithms we set f u v A Au B v uT( , ) ( ),� � � � � .

We use four evaluation metrics: Accuracy, Precision, Recall, and F1-score [26] as explained below 
for comparing the performance of the classification algorithms.

Accuracy TP TN
TP FP TN FN

�
�

� � �
�100%. (4.2)

Precision TP
TP FP

�
�

. (4.3)

Recall TP
TN FN

�
�

. (4.4)

F score Precision Recall
Precision Recall

1 2
� �

� �
�

( ) , (4.5)

where these matrices gave True Negative (TN), False Positive (FP), False Negative (FN), and True 
Positive (TP). The multi-class cross entropy loss is used in multi-class classification by the form:

Loss y y
i

K
k k� �

�

��
1

log , (4.6)

where yk  is 0 or 1, indicating whether class label k is the correct classification and yk∧  is a probability 
of class yk  and K is the number of scalar values in the model output.

For starting our computation, we set the activation function as sigmoid, hidden nodes m =120. 
We next start to find the suitable regularization parameter λ  for our Algorithm 1 by setting 

�n Teigenvalue A A
�

1
max( ( ))

, � � 0 5. , �n n
* �

�
1

10 1
, �n

* � 0 5.  where

�
�

n n n
n n

n

n x x
n N x x

� �
� �

�
�

1
1

1� �
, , ,��������������������������if�

** ���������������������������������������������otherwise, ,

��

�

�
�
�

(4.7)

�
�

n

n

n
n N

�
�

1 , ,

,

����������������������������������������if�

�* ����������������������������������������otherwise

�

�

�
��

(4.8)

such that N is the number of iteration that we want to stop, and � �� �( )x x , � �x   with � �[ , ).0 1   
The stopping criteria is the best accuracy of each case. The comparison of all cases with different 
parameters λ  of Algorithm 1 are presented in Table 1.

From Table 1, we see that � �10  gets the highest accuracy, thus we choose � �10  for the next cal-

culation. Next, we consider the different of the parameters µn  when � � 0 5. , �n n
* �

�
1

10 1
 and �n

* � 0 5. .  

Then we obtain the following numerical results of different parameter µn .

From Table 2, we see that �n Teigenvalue A A
�

0 999.
( ( ))max

 gets less number of iteration and the high-

est accuracy, thus we choose �n Teigenvalue A A
�

0 999.
( ( ))max

 for the next calculation. Next, we consider 
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the different of the parameters ρ  when � �10 , �n n
* �

�
1

10 1
 and �n

* � 0 5. . Then we obtain the following 

numerical results of different parameter ρ .
From Table 3, we see that � � 0 99.  gets less number of iteration and the highest accuracy, thus we 

choose � � 0 99.  for the next calculation. Next, we consider the different of the parameters ηn
*  when 

� �10 , �n Teigenvalue A A
�

0 999.
( ( ))max

 and �n
* � 0 5. . Then we obtain the following numerical results of 

different parameter ηn
* .

From Table 4, we see that �n n
* �

�
1

100 1
 gets less number of iteration and training time, thus 

we choose �n n
* �

�
1

100 1
 for the next calculation. Next, we consider the different of the parameters 

Table 1: Numerical results of different regularization parameters λ .
λ Training Time Iteration Number Accuracy
.0001 0.0486 59 57.85
.01 0.0557 58 57.85
.1 0.0406 49 58.68

0.0473 61 49.59
0.0778 107 59.50

Table 2: Numerical results of different parameters µn .

µn

Training 
Time

Iteration 
Number Accuracy

0 1.
( ( ))max eigenvalue A AT

0.1127 154 57.85

0 5.
( ( ))max eigenvalue A AT

0.0297 32 57.85

0 99.
( ( ))max eigenvalue A AT

0.0431 34 57.87

0 999.
( ( ))max eigenvalue A AT

0.0764 105 59.50

1
max( ( ))eigenvalue A AT

0.0778 107 59.50

Table 3: Numerical results of different parameters ρ .
ρ Training Time Iteration Number Accuracy
0.1 0.1127 113 59.50
0.5 0.0297 105 59.50
0.9 0.0431 98 59.50
0.99 0.0764 96 59.50
0.999 0.0778 96 59.50
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δn
*  when � �10 , �n Teigenvalue A A

�
0 999.

( ( ))max
 and � � 0 99. . Then we obtain the following numerical 

results of different parameter δn
* .

From Table 5, we see that �n
n nx x

* �
� ��

10
101� �

 gets the highest accuracy. We next show the per-

formance of our Algorithm 1 compare with the other existing algorithms (1.2), (1.3), (1.5) and (1.7).
Table 6 shows that our algorithm gets the highest precision, recall, F1-score, and accuracy effi-

ciency. Even though it has a higher number of iterations than Algorithm (1.7) but it has less training 
number than that. It has the highest probability of correctly classifying pre-service mathematics 
teachers’ technology integrated competency level compared to algorithms examinations. We present 
the training and validation loss with the accuracy of training to show that our algorithm has no over-
fitting in the training dataset.

From Figures 1–2, we see that our model from Algorithm 3 by the suitable parameters in Table 1–6 
gets good fitting model that is the measure of a machine learning model generalizes well to similar 
data to that on.

As a result, we implemented a modified extragradient method with an inertial extrapolation step 
and viscosity-type method to solve equilibrium problems of the pseudomonotone bifunction operator 

Table 4: Numerical results of different parameters ηn
* .

ηn
* Training Time Iteration Number Accuracy
1

1n +

0.0741 98 59.50

1
10 1n +

0.0745 96 59.50

1
50 1n +

0.0745 96 59.50

1
100 1n +

0.0729 96 59.50

1
1000 1n +

0.0767 96 59.50

Table 5: Numerical results of different parameters δn
* .

δn
* Training Time Iteration Number Accuracy

0.2 0.1103 152 59.50
0.5 0.0729 96 59.50
0.9 0.0254 26 57.85

10
101� �x xn n� ��

0.0508 65 62.81

1
1

3� �x x nn n� ��

0.1316 191 59.50



Suparatulatorn R et al., Results in Nonlinear Anal. 6 (2023), 1–18. 15

Table 6: The performance of our Algorithm 3 comparing with the other exiting algorithms.
Iter. No. Training Time Precision Recall F1-score Accuracy

Algorithm (1.2) 190 0.1445 0.6956 0.6538 0.5798 59.50
Algorithm (1.3) 192 0.1462 0.6956 0.6538 0.5798 59.50
Algorithm (1.5) 191 0.6159 0.6956 0.6538 0.5798 59.50
Algorithm (1.7) 58 0.1385 0.6133 0.6786 0.6322 61.16
Algorithm 1 65 0.0508 0.7053 0.6923 0.6292 62.81

100 101

Number of iterations

45

50

55

60

65

A
cc

ur
ac

y

Training and Validation Accuracy

Training Accuracy
Validation Accuracy

Figure 1: Accuracy plots of the iteration of Algorithm 1.
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0.1

0.105

0.11

0.115

0.12

0.125
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0.135

0.14

Lo
ss

Training and Validation Loss

Training Loss
Validation Loss

Figure 2: Loss plots of the iteration of Algorithm 1.
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to an educational dataset of 474 instances containing nine attributes, including major; gender; type 
of supplementary digital technology training courses (short, medium, and long format); grade point of 
Information Technology for Learning course; grade point of Innovation and Information Technology 
course; grade point of Digital Technology for teaching mathematics, GPA, and digital proficiency level. 
The accuracy of classification achieved by the proposed machine learning algorithm. It was found that 
62.81% of the dataset was been classified accurately with our algorithm although the number of iter-
ations compared to Algorithm 1.7 may be higher.

5. Conclusion and Discussion

0.7cm This paper proposes a modified extragradient method as a machine learning-based model to 
predict the digital proficiency level in mathematics classrooms of pre-service teachers, using their 
major; gender; type of supplementary digital technology training courses; grade point of Information 
Technology for Learning course; grade point of Innovation and Information Technology course; grade 
point of Digital Technology for teaching mathematics course, and GPA as the primary data. To predict 
the pre-service teachers’ digital proficiency level, the performance of several machine learning meth-
ods was computed and compared.

According to the findings, the proposed method attained a classification accuracy of 62.81%, higher 
than other algorithms. Subsequently, it can be said that grade points of existing courses related to 
the digital technology of pre-service teachers who deal with mathematics classrooms are critical pre-
dictors to be used to predict digital proficiency level. The result was compared with the studies that 
predicted digital and technological knowledge level of pre-service teachers. Leoste et al. [27] predicted 
digital skills of early childhood teachers in Estonia to be successful in teaching with digital technol-
ogy. The duration type of a supplementary digital technology training course affected to the teachers’ 
digital skills. The findings of their study imply that a short-term training course would be practical 
for leading teachers with beginner-level digital competencies to the expert level, while a long-term 
training course might result in a more significant proportion of teachers with top-level digital skills.

Moreover, the result presented that the Information Technology for Learning course grade points 
affected pre-service teachers’ digital proficiency levels. While the Information Technology for Learning 
course aims to develop the technology knowledge of pre-service teachers, this result is consistent with 
Trainin et al. [28]. They found that technology knowledge significantly predicted pre-service teachers’ 
instructional change with technology integration.

Angers and Machtmes [29] predicted the technology-integrating skills of middle school exemplary 
teachers that a perspective about computer technology as a tool for teaching and learning affected the 
integrating skills. This is relevant to the Innovation and Information Technology course grade point 
attribute. Since the Innovation and Information Technology course included content related to a per-
spective of using computer technology as a tool for designing practical lessons, they found that it has 
a significant effect on teachers’ technological integrating skills.

Furthermore, according to our result, the grade point of Digital Technology for teaching mathe-
matics course affected the digital proficiency level. This course aims to develop technology-enhanced 
communities and core content of teachers’ pedagogical reasoning using technology in mathematics 
classrooms. Thus, our result is coherent with Guzey and Roehrig [30]. They concluded their study that 
the formation of Technological Pedagogical and Content Knowledge (TPACK), which involves digital 
proficiency level, was strongly tied to teachers’ pedagogical reasoning, and Technology Enhanced 
Community (TEC) pushed teachers to assess their pedagogical reasoning and practices critically.

Consequently, the digital proficiency level of pre-service teachers in charge of mathematics class-
rooms was predicted using our proposed modified extragradient method. The findings demonstrate 
that our machine learning algorithms accurately predict pre-service teachers’ digital proficiency 
levels. The results of this study may assist teacher educators in identifying pre-service teachers with 
below-average or above-average academic motivation. Later, for instance, teachers may pair students 
with below-average educational drive with students with above-average digital proficiency and urge 
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them to engage in groups or projects. This may increase the pre-service teachers’ motivation and 
ensure their active learning process engagement. In addition, such data-driven research could aid 
higher education in building a framework for learning analytics and contribute to the decision- making 
processes of pre-service teachers.

Future research may include more input attributes and machine learning methods in the modeling 
procedure. In addition, it is vital to leverage the efficacy of many approaches to analyze pre-service 
teachers’ learning habits, solve their issues in teaching, and enhance the educational environment.
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