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1. Introduction
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Also, the discrete form of inequality (1.1) for two +ve sequences of real numbers am  and bn  is 
given as:
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From the end of 19th until the beginning of the 21st century, many authors have followed D. Hilbert to 
reprove, apply or generalize his great work in inequalities, (see [1–8]).

In recent years, Authors have continued to forge ahead in using Hilbert inequalities to extend, 
improve, and generalize the results concerning Hilbert inequalities in discrete, half-discrete and inte-
gral form for three variables, in [9], Tserendorj Batbold and Laith E.Azar gave the following:
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where λ > 0, � � �
� ��

�
�
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, , f x y( , ) is a non-negative function defined on (0, )� � (0, ),∞ and g z( ) > 0 on 

(0, );∞  the constant C B
p q

= ,�
�
�
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�
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In (2022), Al-Oushoush Nizar gave the discrete form of this study, see [10], also, he gave a new 
version of Hilbert integral inequality of three variables with a hyperbolic sine function [11].

2. Preliminries and Lemmas

Here, we use the improper integrals that represent the necessary functions that we need in this work:
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Also, for the above famous special functions, we will use the other useful representations for them as 
follows:
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Next, the following lemmas are the main tools in proving the main result:

Lemma 2.1: Let p >1, 1 1 =1,
p q
+  and br > 0, then for ω > 0 and 0 < 1

� �� �
p
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Proof: Using Hölder inequality, we get
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Lemma 2.2: Suppose that p >1, 1 1 =1, > 0,
p q
� �  λ > 0, 0 < 1
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q

 and f x y( , ) > 0 is a non-negative 

function defined and integrable on ( )0, (0, )� � � , we have
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Proof: Using Hölder inequality, and using the substitutions y xu= , x u
u
v= 1 +  (to evaluate the first 

double integral on the righthand of the inequality), we have
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Remark: Note that if 0 < <1p  and 1 1 =1,
p q
+ then by the reverse form of Hölder inequality, we can 

prove the reverse form of (2.6) and (2.7), which we need in the theorem 3.2.
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 a) If we take λ = 3
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Substitute (2.6) and (2.7) in (3.3), we get
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It is clear that when � � �0  from (3.4) and (3.5) leads to a contradiction. Therefore, we completely 
prove our theorem.

Next, we introduce the reverse form of the inequality given in Theorem 3.1
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where C B
p q

= ,�
�
�

�� ��

�
�

�

�
�  is the best possible.

Proof: By using the reverse Hölder inequality, and following the same procedure as in the proof of 
Theorem 3.1, we can get the proof of Theorem 3.2.

4. Equivalent Forms

In this part, we give two equivalent forms of each of our main theorems, all with the best constant.

Theorem 4.1: Under the conditions of theorem 3.1, we give the following two inequalities:
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and
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Inequalities (4.1) and (4.2) are equivalent to (3.1); also, here the constants Cp and Cq are best possible.

Proof: We start to prove (4.1), set
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From that we get
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dividing the two sides of (4.3) by � � �
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 we get (4.1). Moreover, from 

Hölder inequality and (4.1), we get
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Using the main inequality (3.1), we obtain
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we get (4.2). Moreover, 

from Hölder inequality and (4.2), we get
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By this, we proved the equivalence between (4.2) and (3.1). Here the constants are the best possible 
as in (3.1). By this, we lead to the end of the proof of our theorem.

Theorem 4.2: Under the same conditions in theorem 3.2, we obtain:
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and
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where the constants here C B
p q

p p= ,�
�
�

�� ��

�
�

�

�
�  and C B

p q
q q= ,�

�
�

�� ��

�
�

�

�
�  are the best possible as in 

Theorem 3.2

Proof: Since the method of proof of the above inequalities is the same as the method in theorem 4.1, 
so, we leave it.
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