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Abstract
Fractional derivative gives important tools to fit the real data with mathematical models because of 
the fractional parameters. This article introduces an algorithm for the approximation of solutions to 
linear and nonlinear fuzzy fractional initial value problems, specifically those involving the Caputo-
Katugampola (CK) derivative, a generalized fractional derivative. The CK fractional derivative, char-
acterized by two parameters, extends the capabilities of Caputo and Caputo-Hadamard fractional 
derivatives. The Optimal Homotopy Asymptotic Method (OHAM) is employed as an approximate 
analytic technique, offering multiple convergent control parameters to fine-tune solution convergence 
and accuracy. The article also addresses the representation of environmental uncertainty within the 
solution using Zadeh’s fuzzy theory extension principle. This algorithm not only introduces the fuzzy 
fractional differential with the CK derivative but also provides a convergent analytic solution with 
minimal residual error. This contribution aims to support researchers in refining mathematical mod-
els to better align with real-world data. Three examples are considered to demonstrate the efficiency 
of the algorithm with several figures and tables.
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1. Introduction

The context for real-world mathematical modeling procedures is provided by fuzzy fractional dif-
ferential equations (FFDEs). To develop a more realistic and flexible model, FFDEs account for 
the fact that knowledge about the behavior of a dynamical system may be ambiguous or contain 
ambiguous parameters [1]. FFDEs are used in various applications such as civil engineering, 
medicine, population models, and particle systems. Agarwal [2] used fuzzy fractional differential 
equations for the first time in 2010, Agarwal’s shareholding changed into drawing the manner 
for scholars to deal with fuzzy fractional differential equations via investigating more fantastic 
applications can be discovered in fluid dynamics [3], physics [4]. One of the greatest benefits of 
using fractional derivatives for modeling real-life phenomena is the long-term memory effect in 
the system [5]. For example, Wawrzkiewicz et al [6] used the fractional derivative for simple 
random-walk models of ion-channel gate dynamics reflecting long-term memory. Because of the 
fast improvement applications of physical for FFDEs, numerous analytical strategies have been 
applied to solve FFDEs.

In most Fuzzy fractional differential equations especially nonlinear ones, there are no exact ana-
lytical solutions known in closed form, so approximate analytical and numerical methods must be 
applied. Newly, many studies have been focused on the numerical and analytical solution of Fuzzy 
fractional differential equations. Some numerical and analytical methods have been developed, such 
as the Power series expansion method [7], Laplace transform method [8, 9], Sumudu transform 
[10, 11], and semi-analytical methods such as Variation Iteration Method (VIM) [12, 13], Adomian 
Decomposition Method (ADM) [14] and Modified Homotopy Perturbation Method (MHPM) [15], 
Gegenbauer Wavelet Polynomials [16], and successive iterations [17].

The concept of the OHAM for handling nonlinear problems without relying only on small/large 
parameters was presented by Marinca [18, 19, 20]. Recently, the OHAM has been hired on several 
engineering and physical [21, 22]. The interesting benefit of OHAM is that it no longer requires 
determining the starting estimate or the curve of the convergence control parameter as HAM does. 
Instead, OHAM has a built-in convergence criterion, comparable to HAM but with a larger degree 
of flexibility [23]. This technique does not necessitate the linearization or discretization of the vari-
ables, nor does it suffer from computation round-off errors, nor does it necessitate a timer. OHAM is 
also parameter unfastened and provides higher accuracy than the approximate analytical strategies 
on the identical order of approximation.

Caputo-Katugampola (CK) fractional integral and derivative is a novel notion of fractional inte-
gral and derivative [24], which generalizes Caputo and Caputo-Hadamard fractional derivatives. 
The utilized derivative is considerably impacted by the parameter values, introducing a useful tool 
for developing fractional calculus models. CK derivative has two fractional parameters which give 
more generalization than other fractional definitions in the modeling and simulations. For instance, 
the Caputo and Caputo-Hadamard fractional derivatives are special cases of CK derivative. This 
sort of generalized derivative appears to be more similar to ordinary derivatives than others and 
proposes an adaptive predictor-corrector approach for numerically solving generalized Caputo-type 
initial value problems [25]. The value has a significant impact on the fractional derivative’s features 
of the second parameter ρ, as a result, it gives a new route for control applications in [26] the authors 
study the existence and uniqueness findings of an initial value issue solution for (CK) fuzzy frac-
tional differential equations.

This work constructs a new effective algorithm for solving FFDEs that contain CK derivative 
with two parameters using OHAM. This algorithm is based on choosing proper parameters that 
guarantee the convergence of solutions that appear in the discussed examples. Combining the sev-
eral parameters fractional derivative form as CK definition with a strong algorithm that controls the 
convergence parameters (OHAM) will guarantee an accurate solution that obeys the real-life data of 
the models. To the best of our knowledge, this is the first contribution that suggests an approximate 
analytic solution for FFDEs including the CK fractional derivative.
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2. Preliminaries

In this section, some Preliminaries will be briefly presented which will be used throughout the paper. 
Here we should mention fundamental definitions and substantial properties for generalized CK 
derivative and integral, and basic definitions for the fuzzy set concept.

2.1. Caputo-Katugampola fractional derivative

The CK derivative is a novel fractional operator that generalizes the idea of Caputo and Caputo-
Hadamard fractional derivatives.

Definition 2.1. [27] Both left and right generalized fractional integrals of the function f , called the 
Katugampola fractional integrals are respectively given by:
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where 0 < a < b < ∞,  f : [a, b] → R is an integrable function, and α > 0 and ρ > 0 two fixed real numbers.
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The first two properties are found in [28].
Proof property (3)

Proof. By Definition (2.1) and set a = 0 we have
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Definition 2.2. [27] Let 0 < a < b < ∞, f : [a, b] → R is an integrable function, and for m − 1 < α ≤ m, 
m ∈ N and ρ > 0. Both left and right CK fractional derivatives of order α, ρ are respectively defined by:
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respectively.

The following properties of CK fractional derivative can be held for constant c ∈ R, a < x ≤ b 
where a ≥ 0, ρ > 0, m − 1 < α ≤ m and f ∈ Cj [a, b], first three properties can refer to [25, 27]:
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We going to prove property (4).

Proof. By Definition (2.2) and set a = 0 we have
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Remark 2.3. When ρ = 1, the CK fractional derivative is simplified to the usual Caputo. 



Alshbeel A. et al., Results in Nonlinear Anal. 6 (2023) No. 4, 157–176. . 161

2.2. Fuzzy set

A fuzzy set idea that was studied by Zadeh in 1965 [29] and is regarded as a generalization of crisp 
(classical) set theory [30]. The membership of items on the topic of a set is classified in binary terms 
in the crisp sets concept; an element either belongs to or does not belong to the set. Fuzzy set the-
ory, on the other hand, provides for the progressive assessment of the membership of elements on 
the topic of a set, which is defined with the valuable resource of a membership function valued with 
inside interval [0, 1]. Fuzzy sets are an extension of the classical set principle because, given a pos-
itive universe, a membership characteristic can also work as an indicator function, translating all 
components to either 0 or 1. A crisp set is often defined as a collection of items or objects xinX that 
may or may not be countable.

Definition 2.4. [31] Let : [0,1]A X →  be a fuzzy set. The ζ -level (ζ -cut) representation of a fuzzy set A
is defined as:

[ ] { | ( ) }, [0,1]A s X A sζ δ ζ ζ= ∈ > ∈ 

Definition 2.5. [32] A triangular fuzzy number is a fuzzy number defined as triple numbers α1 < α2 < 
α3 with the base on the interval [α1, α3] and at x = α2 as a peak point and membership function is as the 
following:
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such that the ζ-level as follows:

[δ(s)]ζ = [α1 + ζ(α2 − α1), α3 − ζ(α3 − α2)],  ζ ∈ [0, 1] 

Definition 2.6. [33] Let S̃ be the set of all normal upper semi-continuous convex fuzzy numbers with 
ζ-level bounded intervals that satisfy the following condition:

[δ(s)]ζ = {s ∈ ℝ : δ ≥ ζ},  ζ ∈ [0, 1]

An arbitrary fuzzy number is represented by an ordered pair of membership functions [δ(s)]ζ = [δ(x),
δ̄(x)]ζ for all which is satisfying

(1) δ(s) is normal: there exists s0 ∈ ℝ such that δ(s0) = 1.
(2) δ̄(s) is convex: ∀s, t ∈ ℝ and λ ∈ [0, 1], it holds that:

δ(λs + (1 − λ)t) ≥ min{(δ(s), δ(t)}

(3) δ is upper semi continues: for any s0 ∈ ℝ, it satisfied that 
0

0( ) lim ( ).
s s

s sδ δ
±→

≥
(4) {s ∈ ℝ : δ ≥ ζ} is compact subset of ℝ.

In the parametric form, which is represented by an ordered pair of functions [δ]ζ = [δ(s), δ̄(s)]ζ =
[δ(s; ζ), δ(s; ζ)], ζ ∈ [0, 1], that hold the below conditions:

(1) δ(s; ζ) is a bounded left continuous non-decreasing in [0, 1]. 
(2) δ̄(s; ζ) is a bounded left continuous non-increasing in [0, 1]. 
(3) δ(s; ζ) ≤ δ̄(s; ζ).
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Definition 2.7. [34] Let h̃: M → S̃ be a map, so, for interval M ⊆ S̃ denote a fuzzy function with crisp
variable, and we define ζ-level set as

[h̃(s)]ζ = [h(s; ζ), h̄(s; ζ)]   s ∈ M, ζ ∈ [0, 1].

where S̃ sets all upper semi-continuous normal convex fuzzy numbers. That is, the fuzzifying func-
tion is a mapping from a domain to a set of fuzzy ranges. In a mathematical sense, the fuzzifying 
function and the fuzzy relation coincide.

Definition 2.8. [35] Given a function g : S → T , where S = S1 ×S2 ×. . .×Sn and let Ã = Ã1 × Ã2 × . . . ×
An, where Ãi, i = 1, 2, . . . , n, be n-fuzzy subset in S and t = g(s1, s2, . . . , sn) in T . Then, the extension
principle allows defining a fuzzy subset B̃ = g(Ã) in T by:

B̃ = {(t, δB̃ (t)) : t = g(s1, s2, . . . , sn), s1, s2, . . . , sn ∈ S}.
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the extension principle can be written for n = 1 as

B̃ = {(t, δB̃ (t)) : t = g(s), s ∈ S}.
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For s, t ∈ S̃, and λ ∈ R, the sum s + t is [s + t]ζ = [s]ζ + [t]ζ and the product λ.s is [λ.s]ζ = λ[s]ζ , and the 
diameter of the ζ-level set of s as diam[s]ζ = [s(ζ) − s(ζ)].

Definition 2.9. [36] Let s, t ∈ S̃. If there is r ∈ S̃: s = t + r, then r is said to be the Hukuhara difference 
of s and t and it is denoted by s ⊖ t.

Definition 2.10. [36] Let s, t be two fuzzy numbers then the distance D[s, t] (Hausdorff distance) is 
defined as
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Definition 2.11. [37] Let g : I → Ẽ and s0 ∈ I . Then the fuzzy function g is said to be Hukuhara differ-
entiable (H-differentiable) at s0, if there is g′(s0) ∈ Ẽ, and for h > 0, there are g(s0 + h) ⊖ g(s0) and g(s0) 
⊖ g(s0 − h) such that
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Definition 2.12. [38] Let g : I → Ẽ for s ∈ I ⊆ R. The nth order Hukuhara differentiable functions at t 

[g̃(t)]ζ = [g(t; ζ), ḡ(t; ζ)], ∀ζ ∈ [0, 1].

The functions g(t; ζ), ḡ(t; ζ) are both nth order Hukuhara differentiable functions and

[g̃(n)]ζ = [g(n)(t; ζ), ḡ (n)(t; ζ)], ∀ζ ∈ [0, 1].
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3. Methodology

3.1. Defuzzification of Fuzzy Fractional IVP with CK derivative

Consider the following general nonlinear FFIVP with the ordinary differential equation:
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the fuzzy fractional H -derivative Dα,ρυ̃(s; ζ), ∀ζ ∈ [0, 1]:
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and the fuzzy fractional function Ãf can be written as follows:
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The last procedure is the defuzzification technique to approximate the solution of FFDEs

3.2. General fuzzy fractional IVP and convergent analysis OHAM

OHAM is an extension of the HAM that is dependent on minimizing residual error. Consider the fol-
lowing FFIVP for the fuzzy fractional process of OHAM:
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where, Dα,ρυ̃ is the linear operator for Eq. (8), υ̃(s; ζ) is the anonymous fuzzy function with crisp vari-
able s, w̃(s; ζ) represent anonymous fuzzy function, B is the boundary condition, and Ãf is the fuzzy
fractional function of crisp variable s and fuzzy variable υ̃.

Refer to OHAM idea in [41] the formulation of fuzzy fractional OHAM ϕ(s; q; ζ ) : [s0, S] × [0, 1] → 
ℝ which satisfies the following:
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The dynamic of OHAM for solving first-order FFDEs introduced by reformulation Eq. (8) and 
refer to Section (3.1) in the lower and upper bound respectively:
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According to the defuzzification of Eq. (1). The formulation for the lower and upper bound of Eq. (9) 
fuzzy fractional OHAM

(1 ) ( ( ; ; )) ( ; )] ( ; )[ ( ( ; ; ))
, ( ; ) ( ; )],

( ; ; )
( ; ; ), 0,

q s q w s q s q
s v s w s

s q
s q

s

φ ζ ζ ζ φ ζ

ζ ζ
φ ζ

φ ζ

− − =

−






−

∂ 
=  ∂






 



 H 

F



(12)

(1 )[ ( ( ; ; )) ( ; )] ( ; )[ ( ( ; ; ))
( , ( ; )) ( ; )],

( ; ; )( ; ; ), 0.

q s q w s q s q
s v s w s

s qs q
s

φ ζ ζ ζ φ ζ
ζ ζ

φ ζφ ζ

− − =
−



 −

 ∂





= ∂






 H 
G



(13)

where the lower and upper fuzzy fractional linear operators are the lower and upper auxiliary 
fuzzy function and [ϕ(s; q; ζ), ϕ̄(s; q; ζ)] the lower and upper unknown fuzzy function respectively. 
Obviously, when q = 0 and q = 1 respectively we have:

ϕ̄(s; 0; ζ ) = v̄0(s; ζ ),   ϕ(s; 1; ζ ) = v(s; ζ). (14)

ϕ̄(s; 0; ζ) = v̄0(s; ζ ), ϕ̄(s; 1; ζ ) = v̄(s; ζ). (15)
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Therefor, when q increase from 0 to 1, the solution ϕ̃(s; q; ζ) vary from υ̃0(s; ζ) to the exact solution.
Now when q = 0, the lower and upper bounds of zeroth-order:

( ; )( ;0; ) ( ; ), ( ; ), 0,

( ; )( ;0; ) ( ; ), ( ; ), 0,

( )

( )

v ss w s v s
s

v ss w s v s
s

ζφ ζ ζ ζ

ζφ ζ ζ ζ

 ∂ = =  ∂  


∂  = =  ∂ 

 

 
(16)

Now, the auxiliary function H̃(q; ζ) for Eq. (12) and (13) as:

1 2
1 2

1

1 2
1 2

1

( ; ) ( ) ( ) ( )

( ; ) ( ) ( ) ( )

j
j

j

j
j

j

q K q K q K q

q r K q K q K q

ζ ζ ζ ζ

ζ ζ ζ

∞

=

∞

=


= = + +…



 = = + +…


∑

∑

H

H

(17)

where, 1 1 1 2 2 2( ) [ ( ), ( )], ( ) [ ( ), ( )], ,K K K K K Kζ ζ ζ ζ ζ ζ= = …   is the auxiliary convergence constants. 
Expanding the solution ϕ̄(s; q; ζ) about q by Taylor’s series get the series approximate solution via 
fuzzy fractional OHAM

0
1

0
1

; ; ( ); ( ; ) ; ( ); .

; ; ( ); ( ; ) ; ( ); .

( ) ( )

( ) ( )

j
j j j

j

j
j j j

j

s q K v s v s K q

s q K v s v s K q

φ ζ ζ ζ ζ ζ

φ ζ ζ ζ ζ ζ

∞

=

∞

=


= +



 = +


∑

∑
(18)

Substitute Eq. (17) and (18) in Eq. (12) and (13) and then collect the coefficient of like powers of 
q to find the lower and upper bound. This procedure gives us a system of linear equations, for the 
zeroth-order given in (16) and for the first order

1 0 1 0 0 0

1 0 1 0 0 0

1
1

( ( ; )) ( ( ; )) ( ) ( )( ( ( ; ) ( ( ; )) ( ; )),
( ( ; )) ( ( ; )) ( ) ( )( ( ( ; ) ( ( ; )) ( ; )),

( ; )( ; ), 0

s s w s K s s w s
s s w s K s s w s

ss
s

υ ζ υ ζ ζ υ ζ υ ζ ζ
υ ζ υ ζ ζ υ ζ υ ζ ζ

ϑυ ζ
υ ζ

ϑ

 − + = − −
 − + = − −


  =   


  F
  G



L
L  (19)

The problem of second-order

2 1 2 0 0 1 1 1 0 1

2 1 2 0 0 1 1 1 0 1

2
2

( ( ; )) ( ( ; )) ( ) ( ; )) ( )[ ( ( ; )) ( ; ), ( ; )) ( ; )],
( ( ; )) ( ( ; )) ( ) ( ; )) ( )[ ( ( ; )) ( ; ), ( ; )) ( ; )],

( ; )( ; ),

( (
( (

v s v s C v s K r v s v s v s w s
v s v s C v s K v s v s v s w s

ss
s

ζ ζ ζ ζ ζ ζ ζ ζ
ζ ζ ζ ζ ζ ζ ζ ζ ζ

ϑυ ζ
υ ζ

ϑ

− = + − −
 − = + − −


 
 





  F  F
  F  G

 


 (20)

the general form of the governing problem via OHAM of kth order
1

1 0 0
1

0 1
1

1 0 0
1

0 1

( ; ) ( ; ) ( ) ( ; ) ( ) ( ; )

( ; ), ( ; ), , ( ; ) ( ; ) ,

( ; ) ( ; ) ( ) ( ; ) ( ) ( ; )

( ; ), ( ; ), , (

( ) ( ) ( ) [ ( )
( ) ]

( ) ( ) ( ) [ ( )
(

k

k k k i k i
i

k i i
k

k k k i k i
i

k i i

v s v s K v s K v s

v s v s v s w s

v s v s K v s v s r

v s v s v

K

ζ ζ ζ ζ ζ ζ

ζ ζ ζ ζ

ζ ζ ζ ζ ζ

ζ ζ

−

− −
=

−

−

− −
=

−

− = −

− … −

− = −

− …

∑

∑

  F 

F

  G

G

L

; ) ( ; ) ,
( ; )( ; ), 0,

) ]
k

k

s w s
v sv s

s

ζ ζ

ζ
ζ











−
 ∂  = ∂  





(21)



Alshbeel A. et al., Results in Nonlinear Anal. 6 (2023) No. 4, 157–176. 166

where Fk−i(ṽ0(s; ζ), ṽ1(s; ζ), . . ., ṽi(s; ζ)) are the lower bound coefficient qk and Gk–i(ṽ0(s; ζ), ṽ1(s; ζ), . . ., 
ṽi(s; ζ)) are the upper bound coefficient qk. Dependent on parameter K1(ζ), K2(ζ), . . . , Kk(ζ), and at  
q = 1 we have:

1 2 0 1 2
1

1 2 0 1 2
1

, ( ) ( ), ; ( ; ) , ( ), ( ), ;

, ( ), ( ), ; ( ; ) , ( ), ( ), ;

( ) ( )

( ) ( )
i

i

i
i

v s K K v s v s K K

v s K K v s v s K K

ζ ζ ζ ζ ζ ζ ζ

ζ ζ ζ ζ ζ ζ ζ

∞

=

∞

=








… = + …

… = + …


∑

∑
(22)

Approximate the series solution for k term as:

* 1 2 0 1 2
1

* 1 2 0 1 2
1

, ( ) ( ), ; ( ); ( ; ) , ( ), ( ), ; ( );

, ( ), ( ), ( ); ( ; ) , ( ), ( ), ; ( );

( ) ( )

( ) ( )

k

k i i

k

ik

i

i
i

v s K K K v s v s K K K

v s K K v s v s K K K

ζ ζ ζ ζ ζ ζ ζ ζ ζ

ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ

=

=

… =




+ …

… = + …








∑

∑
(23)

We can obtain of the residual error R̃ = [R, R̄ ] by substituting Eq. (23) in Eq. (10) and (11)

1 * 1

* 1

, ( ), , ( ); , ( ), , ( );

, ( ), , ( );
( ; )

( ) ( ( ))
( ( ))

i k

k

R s K K v s K K

v s K K
w s

ζ ζ ζ ζ ζ ζ

ζ ζ ζ
ζ

… = …

…

−

−


F  (24)

1 * 1

* 1

, ( ), , ( ); , ( ), , ( );

, ( ), , ( );
( ; )

( ) ( ( ))
( ( ))

i k

k

R s K K v s K K

v s K K
w s

ζ ζ ζ ζ ζ ζ

ζ ζ ζ
ζ

… = …

− …

−



G (25)

In case R̃ = 0 where R̃ = [R, R̄], then ṽ* yields the exact solution. To determinations auxiliary con-
stants K̃1(ζ), K̃2(ζ ), . . . , K̃k (ζ), we apply the least squares method on the interval s ∈ [s0, S]:

0

0

2
1 1

2
1 1

, ( ), , ( ); , ( ), , ( );

, ( ), , ( ); , ( ), , ( );

( ) ( )

( ) ( )

s

k k
s

s

k k
s

M s K K R s K K ds

M s K K R s K K ds

ζ ζ ζ ζ ζ ζ

ζ ζ ζ ζ ζ ζ


… = …



 … = …


∫

∫
(26)

where, a and b are set based on the given problem, M̃ = [M, M
—

] and the optimal values for K̃1(ζ), 
K̃2(ζ), . . . , K̃K(ζ), can be determent by following:

1 2

0.
k

M M M
K K K
∂ ∂ ∂

= =… = =
∂ ∂ ∂

  

  

 (27)

4. Applications

In this part, we provide three examples to illustrate the effectiveness of the OHAM for solving linear 
and nonlinear FFIVPs using generalized Caputo-type fractional sense (CK) derivative.



Alshbeel A. et al., Results in Nonlinear Anal. 6 (2023) No. 4, 157–176. . 167

Example 4.1. Consider the following FFIVP:
, 2

0

( ) , 0 1,
(0) (0, ) [ ,2 ], [0,1].

D v s s s
v v

α ρ

ζ ζ ζ ζ

 = ≤ ≤


= = − ∈



 

(28)

The general exact solution for Eq. (28) by refer to section (2.1), for arbitrary α, ρ > 0 and ζ ∈ [0, 1]: 

2
0 .

2( 1)
( ; ) (0, ) 2( 1)

v s v s

α

αρ
ρ

ρζ ζ
α

ρ

−

+
Γ +

= +
Γ + +

 

We can construct the following homotopy series by referring to section (3.2) as follows:
, 2 , 2(1 ) ( ; ; ) ( ; ) ( ; ; ) .[ ] [ ]q D v s q s q D v s q sα ρ α ρζ ζ ζ− − = −

 H  (29)

Now, employing (17) and (18) into (29), and equating the coefficient of the same powers of q, we have 
the following governing equations for example (4.1):

0 , 2
0 0 . : ( , ) 0, (0, )q D v s s vα ρ ζ ζ− =   (30)

1 , ,
1 1 1 0

2
1

1

( )

(0, ) 0.

: , ( ); (1 ( )) ( , )
(1 ( )) ,

q D v s K K D v s
K s

v

α ρ α ρζ ζ ζ

ζ

ζ

ζ

= +

− +

=

 

 





(31)

2 , ,
2 1 2 1 1

,
2 0

2

: , ( ), ( ); ) (1 ( )) ( , )
( ) ( ; )

(0

(

, ) 0.

q D v s K K K D v s
K D v s

v

α ρ α ρ

α ρ

ζ ζ ζ ζ ζ

ζ ζ
ζ

= +

+

=

  

 









(32)

, ,
1 1 1

,

1
2

: , , , ( ); ) (1 ( )) ( , )

( ) ( , )

( ) , (0, ) 0

(

.

k
k k k

k

i k i
i

k k

q D v s K K K D v s

K D v s

K s v

α ρ α ρ

α ρ

ζ ζ ζ ζ

ζ ζ

ζ ζ

−

−
=

… = +

+

− =

∑

  

 











(33)

Now by applying the operator Iα,ρ on (30)–(34), using initial condition given in (28) we conclude that:
, 2

0 0( , ) (0, ) ( ).v s v I sα ρζ ζ= +  (34)

1 1, ( ); ) 0,(v s K ζ ζ =





 (35)

1, ( ), , ( ); ) 0,(k kv s K Kζ ζ ζ… = 





 (36)

In our example, we can see that the zeroth order problem of the homotopy series gives the exact solu-
tion for Eq. (28), which is an indication that the OHAM method is effective, accurate and superior 
under (CK) sense.
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Example 4.2. Consider the following linear FFIVP:
,

0

( , ) ( , ), 0 1,
(0) ( , ) [0.2 0.8,1.2 0.2 ], [0,1].

D v s v s s
v v s

α ρ ζ ζ
ζ ζ ζ ζ

 = ≤ ≤


= = + − ∈

 

 

(37)

By referring to section (3.2) we can get of series homotopy of eighth order by
, ,(1 ) ( ; ; ) ( ; )[ ( ; ; ) ( ; ; )],q D v s q q D v s q v s qα ρ α ρζ ζ ζ ζ− = −

  H  (38)

where
8

0
1

( ; ; ) ( ; ) ; ( ); ) ,( i
i i

i
v s q v s v s K qζ ζ ζ ζ

=

= +∑ 

    (39)

8

1
( ; ) ( ) .i

i
i

q K qζ ζ
=

=∑ 
H  (40)

Now, substituting (39) and (40) into (38), and equating the coefficient of the same powers of q, we 
have the following:

0 ,
0 0: ( , ) 0, (0, ). q D v s vα ρ ζ ζ=   (41)

1 , ,
1 1 1 0

1 0 1

: , ( ); (1 ( )) ( , )
( ) ( ; ) .

(
0

)
, ( , ) 0

q D v s K K D v s
K v s v

α ρ α ρζ ζ ζ ζ

ζ ζ ζ

= +

− =

 

 



 

(42)

2 , , ,
2 1 2 1 1 2 0

1 1 2 0 2

: , ( ), ( ); (1 ( )) ( , ) ( ) ( ; )

( ) ( ; ) ( ) ( ; ),

)

(0, ) .

(

0

α ρ α ρ α ρζ ζ ζ ζ ζ ζ ζ

ζ ζ ζ ζ ζ

= + +

− + =

   

  

 

  



q D v s K K K D v s K D v s

K v s K v s v  (43)

, , ,
1 1

1

1

: , ( ), , ( ); ( , ) ( ) ( ; )

( ) ( ; ), .

( )

0, ) ( 0

k
k

k k k i k i
i

k

i k i k
i

q D v s K K D v s K D v s

K v s v

α ρ α ρ α ρζ ζ ζ ζ ζ ζ

ζ ζ ζ

− −
=

−
=

… = +

− =

∑

∑

 

  





 

(44)

Now by applying the operator Iα,ρ on equations in (41)–(44), and using initial condition given in (37), 
we have the fuzzy linear equations as follows:

0 0( ; ) (0; ).v s vζ ζ=   (45)

,
1 1 1 0 1 0, ( ), (1 ( )) ( ; ) ( ) ( ; ) .( ) [ ]v s K K v s I K v sα ρζ ζ ζ ζ ζ ζ= + −  

    (46)

2 1 2 1 1 2 0

,
2 0 1 1

, ( ), ( ), ) (1 ( )) ( ; ) ( ) ( ; )

( ) ( ; ) ( ) (

(

; ) .[ ]
v s K K K v s K v s

I K v s K v sα ρ

ζ ζ ζ ζ ζ ζ ζ

ζ ζ ζ ζ

= + +

− +

   

  

 

 



 (47)

( )1 1
1

,

1

, ( ), , ( ); ( ) ( ; )

( ) ( ; ) .

k

k k k i k i
i
k

i k i
i

v s K K v K v s

I K v sα ρ

ζ ζ ζ ζ ζ

ζ ζ

− −
=

−
=

… = +

 
−  

 

∑

∑

  

  





(48)

We note that formula (48) satisfying for k ≥ 2.
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The approximate solution of Eq. (37) by 8 order fuzzy fractional OHAM as follows:
8

0
1

( ; ) ( ; ) ( , ( ); ).i i
i

y s v s v s Kζ ζ ζ ζ
=

= +∑ 

    (49)

In this problem, we solved example (4.2) for α = 0.8, ρ = 0.95 and s = 0.2 for different values of ζ ∈ [0, 
1], using Mathematica software. Here we use the 8-order OHAM series solution to obtain fuzzy solu-
tions and accuracy of the lower and upper bounds of (45)–(48) as shown in Table (2), and choosing 
the optimal convergence parameters K̃i at ζ = 1 given below in Table (1). Figure (1) explain the three 
dimensional for the lower and upper fuzzy solution for Eq. (37). Figures (2) and (3) shows the resid-
ual error for lower and upper fuzzy fractional OHAM respectively in three-dimensional form. We can 
obtain the residual error by:

Ẽ(s; ζ) = Dα,ρv*(s; ζ) − v*(s; ζ). (50)

Example 4.3. Fuzzy Riccati equation [42]:
, 2 2

0

( ) ( ) , 0,
(0) ( , ) [0.1 0.1,0.1 0.1 ], [0,1].

D v s v s s s
v v s

α ρ

ζ ζ ζ ζ

 = + ≥


= = − − ∈



 

(51)

solution of Eq. (37), at α = 0.8, ρ = 0.95, s ∈ [0, 0.2] and ζ ∈ [0, 1]

Table 1. OHAM 8-order optimal values of K̃i(ζ) for ζ = 1 and s = 0.2 of Eq. (37).

i 1 2 3 4 5 6 7 8
ζi(ζ) –0.991 –0.00186 0.00063 –0.000066 3.5×10−6 9.5×10−7 7.8×10−8 8.8×10−9

K̄i(ζ) –0.954 –0.00382 0.00016 –0.000086 0.000018 -2.9×10−6 6.4×10−7 8.8 ×10−9

Table 2. OHAM lower and upper solution and residual error for equation (37), at α = 0.8, ρ = 0.95 and s = 0.2.

ζ v(s; ζ ) E(s; ζ ) v̄(s; ζ ) Ē(s; ζ )

0 1.12473 3.25723×10−9 1.68709 1.09421×10−7

0.2 1.18096 3.42009×10−9 1.63085 1.05774×10−7

0.4 1.23720 3.58295×10−9 1.57462 1.02127×10−7

0.6 1.29344 3.74582×10−9 1.51838 9.84796 ×10−8

0.8 1.34967 3.90868×10−9 1.46214 9.48321×10−8

1 1.40591 4.07154×10−9 1.40591 9.11847 ×10−8

Figure 1. Upper and lower fuzzy fractional OHAM.
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By refer to section (3.2) we can get of series homotopy
, 2 , 2 2(1 ) ( ; ; ) ( ; ) ( ; ; ) ( ; ; ) ,q D v s q s q D v s q v s q sα ρ α ρζ ζ ζ ζ   − − = − −   



  H  (52)

where
4

0
1

( ; ; ) ( ; ) ; ( ); ) ,( i
i i

i
v s q v s v s K qζ ζ ζ ζ

=

= +∑ 

   (53)

4

1
( ; ) ( ) .i

i
i

q K qζ ζ
=

=∑ 
H  (54)

By, substituting (53) and (54) into (52), and equating the coefficient of the same powers of q, we 
have the following equations:

Zeroth order problem
, 2

0 0( , , ) , (0, )D v s s vα ρ ζ ζ=   (55)

by applying the Iα,ρ on the equation (51), we have

ṽ0(s; ζ) = Iα,ρ(s2). (56)

First order problem

( ) ( ), 2 2 2
1 1 0 1 0

1

( ; ) 1 ( ) ( ; ) ( ) ( ; ) ,

(0; ) 0.

v s K v s I K v s s s

v

α ρζ ζ ζ ζ ζ

ζ

  = + − + +  
 =

  



(57)

Second order problem

( )

2
,

2 1 2 1
1

, 2 2
0 1 2 0 2 

( ; ) ( ; ) ( ) ( ; ) 2 ( )

( ( ; ) ( ; ))] ( ) ( ; ) (0; 0

[

) ,

i i
i
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Figure 2. Residual error for lower fuzzy fractional 
OHAM of Eq. (37) for α = 0.8, ρ = 0.95 and ζ ∈ [0, 1], 
s ∈ [0, 0.2].

Figure 3. Residual error for upper fuzzy fractional 
OHAM of Eq. (37) for α = 0.8, ρ = 0.95 and ζ ∈ [0, 
1], s ∈ [0, 0.2].
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Third order problem
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Fourth order problem
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The approximate solution of equation (51) using Fourth order become:

( ) ( )
4

* 1 4 0 1
1
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 (61)

we can obtain the residual error by:
, 2 2

* *( ; ) ( ; ) ( ; ) .E s D v s y s sα ρζ ζ ζ= − −  (62)

For example (51), we construct a fourth-order of homotopy series and use Mathematica software. 
The fuzzy fractional OHAM for lower and upper solution and accuracy given in Table (3) at α = 0.8, 
ρ = 0.95 and s = 0.3 for ζ ∈ [0, 1], the lower and upper auxiliary convergent parameters shown in 
Tables (4) and (5) respectively. Figure (4) gives us the lower and upper solution at α = 0.8, ρ = 0.95, 
s ∈ [0, 0.3] and ζ ∈ [0, 1], the residual error for upper and lower bounds explain in figures (5) and (6) 

Table 3. OHAM lower and upper solution and residual error for example (51), at α = 0.8, ρ = 0.95 and s = 0.3.

ζ v(s; ζ ) E(s; ζ ) v̄(s; ζ ) Ē(s; ζ )

0 –0.0812111 –2.89021×10−9 0.120079 –5.52908×10−9

0.2 –0.0626852 6.92484×10−10 0.0982036 1.45209×10−9

0.4 –0.0438324 –2.60771×10−10 0.076751 –7.67054×10−10

0.6 –0.0246426 –8.13365×10−11 0.0557067 –2.27483×10−10

0.8 –0.00510512 5.73839×10−12 0.0350577 1.5787×10−10

1 0.0147911 –1.81204×10−10 0.0147911 –1.24098 ×10−10

Table 4. Lower auxiliary convergence parameters K̃i of Eq. (51) for forth order OHAM at α = 0.85, ρ = 0.9, for s ∈ [0, 0.3].

ζ K1 K2 K3 K4

0 –0.9849 –0.00185 –0.000089 –4.63×10−6

0.2 –0.9620 –0.00025 –9.49×10−7 1.84×10−9

0.4  –0.9633 –0.00023 –8.54×10−7 1.64×10−9

0.6 –0.9646 –0.0002 –7.62×10−7 1.48×10−9

0.8 –0.9659 –0.0002 –6.8×10−7 1.297×10−9

1 –0.9672 –0.00019 –5.99×10−7 1.167 ×10−9
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respectively. One can see that from Tables (6) and (7), third-order OHAM lower and upper solution 
and accuracy with various values for parameters α and ρ give us more flexibility and many tools to 
get fit data as is evident the lower solution in Figures 7,8 and the upper solution in Figures 9,10.

Conclusion

The OHAM successfully created a novel approach for solving fractional order fuzzy differential equa-
tions using the CK fractional derivative. The effect of the two parameters of the fractional derivatives 

Table 5. Upper auxiliary convergence parameters K̃i of Eq. (51) for forth order OHAM at α = 0.85, ρ = 0.9, for s ∈ [0, 0.3].

ζ K̄1 K̄3 K̄3 K̄4

0 –1.0373 –0.00025 8.71×10−7 2.80×10−9

0.2 –1.0296 –0.00016 4.30×10−7 1.23×10−9

0.4 –1.0234 0.001240 –0.000019 –1.54×10−6

0.6 –1.0183 9.2×10−6 2.06×10−7 –4.75×10−9

0.8 –1.0041 0.00015 1.63×10−6 –8.05×10−8

1 –0.9998 –0.00014 1.11×10−6 –2.12×10−8

Figure 4. Upper and lower fuzzy fractional OHAM 
solution of Eq. (51), at α = 0.85, ρ = 0.9, s ∈ [0, 0.3] and 
ζ ∈ [0, 1].

Figure 5. Residual error for lower fuzzy fractional OHAM 
of Eq. (51) for α = 0.85, ρ = 0.9, and ζ ∈ [0, 1], s ∈ [0, 0.3].

Figure 6. Residual error for upper fuzzy fractional OHAM of Eq. (51) for α = 0.85, ρ = 0.9, and ζ ∈ [0, 1], s ∈ [0, 0.3].
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Table 6. Three order OHAM lower and upper solution and accuracy of Eq. (51), at ζ = 1, ρ = 1 and s = 0.5.

α v(s; ζ)  E(s; ζ) v̄(s; ζ) Ē(s; ζ)
0.50 0.109895 –2.15803×10−5 0.1099004 –2.54972×10−6

0.75 0.0678964 –1.06149×10−6 0.0678966 8.59075×10−8

1.00 0.0417911 –6.22067×10−8 0.0417911 2.59737×10−8

Table 7. Three order OHAM lower and upper solution and accuracy of Eq. (51), at ζ = 1, α = 1 and s = 0.5.

ρ v(s; ζ) E(s; ζ) v̄(s; ζ) Ē(s; ζ)
0.50 0.0713605 –6.02267×10−6 0.0713622 6.86773×10−6

0.75 0.0543347 –5.23302×10−7 0.0543347 3.06924×10−7

1.00 0.0417911 –6.22067×10−8 0.0417911 2.59737×10−8

�(
s,�

)

Figure 7. Lower third-order OHAM solution for Eq. (51) for ζ = 0.5 and s ∈ [0, 0.5], with ρ = 1 and α = 0.5:(Red),  
α = 0.75:(Blue), α = 1:(Black).

�(
s,�

)

Figure 8. Lower third-order OHAM solution for Eq. (51) for ζ = 0.5 and s ∈ [0, 0.5], with α = 1, ρ = 0.5:(Red), ρ = 0.75:(Blue), 
ρ = 1:(Black).
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�̅(
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Figure 9. Upper third-order OHAM solution for Eq. (51) for ζ = 0.5 and s ∈ [0, 0.5], with ρ = 1 and α = 0.5:(Red),  
α = 0.75:(Blue), α = 1:(Black).

�̅(
s,�

)

Figure 10. Upper third-order OHAM solution for Eq. (51) for ζ = 0.5 and s ∈ [0, 0.5], with α = 1, ρ = 0.5:(Red), ρ = 0.75:(Blue), 
ρ = 1:(Black).

on the solution behavior is discussed. The parameters have a substantial impact on the used deriv-
ative, introducing an excellent tool for creating fuzzy fractional models. The results are compared 
with the exact solution in the standard case, and the residual error is calculated for the fractional 
one. The results prove that the residual errors are close to zero for different fractional parameters. 
The algorithm’s numerical findings satisfy the fuzzy number characteristics by taking the convex 
fuzzy number form. Furthermore, the approach offers benefits over other existing analytical approx-
imation methods.
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