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Abstract
In this work, we study the fluctuations in the prices of agricultural and energy products. These 
prices are characterized by seasonality, where demand and supply conditions alternate cyclically-
with a precise and known periodicity. We investigate the dynamics of a cobweb model, consisting of 
a one-dimensional differential equation with two-time delays, to understand the impact of demand 
and supply parameters on this cyclical behavior. We start by studying the linear stability analysis to 
find sufficient conditions under which the positive equilibrium is locally asymptotically stable. After 
choosing the delays as bifurcation parameters, we prove the existence of a family of periodic solutions 
that bifurcate from this equilibrium. Finally, we discuss their economic rationale with the help of 
numerical simulations.
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1. Introduction

The Cobweb model was introduced to provide a theoretical explanation for temporary fluctuations in 
market equilibrium with a supply delay. This model typically describes markets for perishable prod-
ucts, in which production plans must be determined before the price that will prevail in the market is 
known. Thus, producers must form expectations about future prices and must base their production 
decisions on these expectations. In this way, the selling price is primarily influenced by the price 
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forecast, the resulting production decisions, and the anticipated future demand (which participates in 
the evaluation of the price forecast) rather than by current demand. This model was originally devel-
oped by Kaldor [1] with linear supply and demand. Subsequently, thanks to some new mathematical 
results as well as the dramatic increase in computing capacity, nonlinear versions of the Cobweb 
model have been studied and carried out through simulation experiments, showing persistent oscilla-
tions in prices [2, 3]. A further step in this line of research was to include more realistic mechanisms 
with regard to expectations formations in the Cobweb framework. For this purpose, Chiarella [4] 
and Hommes [5, 6] have studied the dynamics of prices with nonlinear supply and demand curves by 
using the adaptive expectations hypothesis [7], with respect to which prices are revised according to 
prediction errors of agents.

Along the same line of research, Onozaki et al. [8] have revisited the cobweb model by considering 
adaptive adjustments on the quantity produced instead of price expectations. With this behavioral 
rule, farmers partially adjust production in the direction of the best response (represented by the 
quantity that maximizes expected profits). By assuming a nonlinear (monotonic) market demand, 
they showed, by using the Homoclinic Point Theorem, that topological chaos can occur in a model 
whose dynamics are characterized by a one-dimensional map. Mackey [9] gives a nonlinear price 
adjustment model with production delay and rigorously derives a stability switching condition for 
which the stability of equilibrium is lost. Furthermore, it is shown that a Hopf bifurcation takes place 
and thus the stable equilibrium bifurcates to a limit cycle after the loss of stability. Recently, Gori 
et al. [10] proposed a delay Cobweb model with profit-maximizing behavior to characterize produc-
tion cycles. The dynamics of the economy are characterized by a one-dimensional delay differential 
equation. Moreover, they take, in [11], a dynamic view of quantities rather than prices by also assum-
ing heterogeneous interacting agents, thus allowing the economy to be described by a system of two 
delay differential equations instead of a one-dimensional system. In this context, by applying the 
recent techniques developed by Ruan and Wei [12] and the geometric approach of stability crossing 
curves developed by Gu et al. [13], they showed the role of heterogeneity in the emergence of Hopf 
bifurcations.

The Cobweb model has also been studied using the gradient approach in [3]. The authors have 
shown that the introduction of the gradient mechanism in the price adjustment process does not 
always lead to market equilibrium, but can also induce complex dynamics and endogenous fluctua-
tions in price evolution. This mechanism is also used, by Askar, to study two discrete-time dynamic 
systems: one-dimensional (1D) and two-dimensional (2D). The first model has three equilibrium 
points, but only the stability of the non-zero real price equilibrium point is examined. In the second, 
where the memory factor is introduced, the equilibrium price can be destabilized by chaotic behavior, 
which is formed due to period doubling and the Neimark-Sacker bifurcation.

Also contains other works which have suggested that producers may not be rational [14], others 
work purpose a version of the Cobweb model with adaptive expectations, accordingly modified to be 
consistent with the market’s seasonality (see the work of Cavalli et al. [15]). The aim was to under-
stand how the periodic nature of the market, as well as the mechanism of formation of agents’ expec-
tations, affect the resulting dynamics.

Although the models, with multiple delays, have been an object of study for a long time, the Cobweb 
models are subject to only one-time delay and little is known about multiple delay versions. In this 
way, we cite the work of Matsumoto [16], who studied the stability conditions of a Cobweb model with 
two delays.

This document is organized as follows. Section 2 presents the basic model of Cobweb and its version 
with two delays. In section 3, we give the stability analysis of the positive equilibrium and the exis-
tence of a Hopf bifurcation around this equilibrium. Numerical simulations are presented in section 
4, and the article is concluded in section 5.
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2. The Model

2.1 Basic Cobweb Model

The basic formulation of the Cobweb model considers a situation in a single-good economic system, 
where the demand and supply functions for a given good are respectively given by

D p t d d p t S p t s s p te e( ( )) = ( ) ( ( )) = ( ),1 2 1 2� �and

with p p te = ( 1).−  Traditionally, it’s supposed that demand negatively depends on price while supply 
positively depends on the expected price. For the sake of analytical simplicity, it’s also assumed that 
consumers and producers make their decisions based only on the price information appearing in the 
good market.

The constants d1, d2, s1, and s2 are all taken to be positive, with d2 representing the price sensitivity 
of demand at time t and s2 representing the price sensitivity of supply at time t – 1, respectively. In 
the supply function equation, the quantity to be supplied by the producer has been expressed in terms 
of the price at time t – 1. Such situations occur in economics. Suppose that in each period the market 
price is always set at a level such that the quantity demanded equals the quantity supplied. In other 
words,

S D= .
The price change is:

dp t
dt

p t D p t S p te( ) = ( ) ( ( )) ( ( )) ,� [ ]� (2.1)

where κ  is the adjustment coefficient.

2.2 Cobweb Model with Two Delays

The purpose of this study is, based on Matsumoto’s [16] formulation, to consider the expected price 
depending on two prices t ��1 and t ��1;

p t p t p te ( ) = (1 ) ,1 2� � � �( ) ( )� � � � (2.2)

where p t( )��1  and p t( )��2  respectively are the price realized at time t t� �� �1 2, , and θ  is a weight 
parameter 0 < <1.θ

Accordingly the price adjustment is governed by a two-delay differential equation

dp
dt

p t d s d p t s p t s p t= ( ) ( ) (1 )1 1 2 2 1 2 2� � � � �[( ) ( ( ) ( ))].� � � � � � � (2.3)

The study of the dynamics of the (2.3) equation has a long history. A great effort has been devoted 
to the analysis of the local stability and the existence of Hopf bifurcation. For instance, Braddock et 
al [15] have completely examined the stability of the equation (2.3). The discussion of the existence 
of the Hopf bifurcation of the equation (2.3) also appears in the works [12, 17, 18] in the case where 
κd2 = 0. The analysis of the Hopf bifurcation in the case where �d2 0� , is very complex and remains 
an open question. In our paper, we focus on this question and look for the sufficient condition under 
which a family of periodic solutions bifurcates from the positive equilibrium.

3. Positive Equilibrium and its Stability Analysis

3.1 Positive Equilibrium

In the following proposition, we prove the existence of the unique positive equilibria.
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Proposition 3.1. The model (2.1) has two equilibria : the trivial equilibrium p = 0 , for any values of 

parameters and the positive equilibria p d s
d s

* 1 1

2 2
= .�

�

Remark 3.2. The assuption d s1 1>  is natural, because the minimum demand is always excded by the 
maximum supply.

3.2 Local Stability and Hopf Bifurcation Analysis

By analysing the characteristic equation associated to (2.3), we prove the existence of Hopf bifurcation 
around the equilibrium p*.

The characteristic equation corresponding to the model (2.3) arround the equilibrium p*  takes the 
form:

� �� ��= ,0 1
1

2
2� � �

� �
� � �e e (3.1)

where � �0
*
2 1

*
2= , =� � �p d p s  and �2

*
2= (1 ) .� �p s�  Lets � �

� �= , = , = , =
1

2

1

0

1
1 1 1�

�
�

�
�

�A B , and 

� �2 1 2= .�  We obtain the normalized characteristic equation:

� �� ��= 1 2� � �
� �B e Ae . (3.2)

Hence, according to the Gopalsamy work [10] (see also [15]), we have the following lemma.

Lemma 3.3. For σ2 = 0
• If (1 2 ) > 0,2 2� �� s d  then all roots of the characteristic equation (3.2) have negative real parts;
• If (1 2 ) < 02 2� �� s d , then there exists an σ1

*  such that if σ σ1 1
*< , then all roots of the character-

istic equation (3.2) have negative real parts and if σ σ1 1
*> , then the characteristic equation (3.2) 

has at least one root with positive real part with

�1
*

2
= ( )

1 ( )
.arcos A B

A B
� �

� �

Proof. For σ2 = 0, the normalized characteristic equation (3.2) reads as

� ��= ( ) .1� � �
�A B e (3.3)

• One just needs to see that (1 2 ) > 0,2 2� �� s d  if and only if A B+ >1;
• Simply needs to see that (1 2 ) < 02 2� �� s d , if and only if A B+ <1.

Remark 3.4. It’s easy to verify that A B+ > 0.
Let’s now return to the study of equation (3.2) when �2 0.�

Lemma 3.5. Assume that

( )H d s0 2 2> .:

Then all roots of the characteristic equation (3.2) have negative real parts for any � i i� 0, =1;2.

Proof. If ( )H0  holds, then we get (1 2 ) > 02 2� �� s d , and from (i) in lemma (3.3) all roots of the charac-
teristic equation (3.2) have negative real parts for σ2 = 0 , and for �2 0� . If this conclusion fails, then 
there must be some σ2

*  such that equation (3.2) has purly imaginary roots ω ω,( > 0)i  satisfying:
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B A� �

�

cos( ) cos( )
sin( ) sin( )

�� ��
� �� ��

1 2

1 2

=
= . (3.4)

Adding up the squares of both equations, we have

� � �� ��2
1 1

2 22 2 1 = ,� � � �sin( ) cos( )B B A

that is

� � �� �� �� ��2
1

2
1

2
1 1

2 22 2 1 = ,� � � � � �sin( ) sin ( ) cos ( ) cos( )B B A

so

( sin( )) (cos( ) )� �� ��� � �1
2

1
2 2= .B A

Then we can let’s

g
g A B
1 1

2

2
2

1
2

( ) = ;
( ) = .
� � ��

� ��

( sin( ))
(cos( ) )

�

� �
(3.5)

The functions g1 and g2 have the following propreties:
 1. g g1 1( ) 0, (0) = 0� �  and � ���� ��lim g1( ) = ;
 2. If B >1, then A B g A B2 2

2
2 2( 1) ( ) ( 1) ;� � � � � ��

 3. If B ≤1, then 0 ( ) ( 1) .2
2 2� � � �g A B�

When ( )H0  holds, then we get A B2 2( 1) < 0.− −  Consequntly, we can see that

g g2 1( ) < 0 ( ).� �� (3.6)

Thus, the equation g g1 2( ) = ( )ω ω  has no solution, and consequently all roots of equation (3.2) have 
strictly negative real parts for all time delays � i i� 0, =1;2.

Lemma 3.6. Suppose that the following assertions hold:

( )

( )
(

H s d

H s d
d d

1 2 2

2 2 2

2
2
2 2

2
2

2

: (1 2 ) < 0

: <
(1 )

(1 )
.

� �

� �
� �

�

�

�
� �

�

Then all roots of the characteristic equation (3.2) have negative real parts for σ σ1 1
*<  and �2 0,�  

where σ1*  is defined in Lemma (3.3).

Proof. For σ σ1 1
*< , if equation (3.2) has purly imaginary roots �i�  with ( > 0)ω , we can write:

B A� �

�

cos( ) cos( )
sin( ) sin( )

�� ��
� �� ��

1 2

1 2

= ,
= . (3.7)

Adding up the squares of both equations, we have

� � �� ��2
1 1

2 22 2 1 = .� � � �sin( ) cos( )B B A

So

� ��
�

��
2

1
2 2

1
2 1

2
= .� � � �B B Acos( ) sin( ) (3.8)
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If we take

h B B A( ) = 2 1
2

;
2

1
2 2

�
� ��

�
� � � �cos( ) (3.9)

we obtain

h( ) = .1� ��sin( ) (3.10)

Since |cos( )|��1 1,�  it follows that

h h h1 2( ) ( ) ( ) ,� � �� � ) (3.11)

with

h B A
1

2 2 2
( ) = ( 1) 1

2
,�

�
�

� � � � (3.12)

and

h B A
2

2 2 2
( ) = ( 1) 1

2
.�

�
�

� � � � (3.13)

it’s easy to verify that (1 2 ) < 02 2� �� s d  if and only if A B+ <1 , and s
d d d

2
2

2
2
2 2

2
2

2<
(1 )

(1 )
� � � �

�

� � �

�
 

implies that ( 1) 1 >12 2B A� � � . Furthermore, for A B+ <1  and ( 1) 1 >12 2B A� � � , the function h1  
defined by (3.12) has the following properties (for the case B = 0, we get the result similar to that 
found in [19]):

 1. h1  attains its unique minimum when � = ( 1) 1 ;2 2B A� � �
 2. � �� � ��0 1( ) =lim h  and � ���� ��lim h1( ) = ;
 3. For σ σ2 2

*> , the characteristic equation (3.2) has at least one root with positive real part.

Clearly, for A B+ <1  and ( 1) 1 >12 2B A� � � , the function h1  and sin( )��1  do not intersect. 
Consequently, all roots of the characteristic equation (3.2) have negative real parts for all σ σ1 1

*< , 
and �2 0.�

Lemma 3.7. Suppose that the following assertion hold:

( )H s d s3 2 2 2: (2 1) < < (1 2 ) .� �� �

Then there exist σ2
* > 0  such that:

• If σ σ2 2
*< , then all roots of the characteristic equation (3.2) have negative real parts;

• If σ σ2 2
*= , then the characteristic equation (3.2) has a pair of purly imaginary root �i�0;

• If σ σ2 2
*> , then the characteristic equation (3.2) has at least one root with positive real part.

Proof. We use the same technique employed in the proof of Lemma (3.6). It’s easy to see that 
(2 1) < < (1 2 )2 2 2� �� �s d s  implies ( 1) 1 < 02 2B A� � �  and ( 1) 1 < 02 2B A� � � . Furthermore, for 
( 1) 1 < 02 2B A� � � , and ( 1) 1 < 02 2B A� � � , the function h1  and h2 , defined respectively by (3.12) and 
(3.13) has the following properties (for the case B = 0), we get the result similar to that found in [19]):
 1. h1  and h2  are concave and strictly monotonically increasing;
 2. � �� �� � � � ��0 1 0 2( ) = ( ) = ;lim limh h
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 3. � �� ���� ��� ��lim limh h1 2( ) = ( ) = ;
 4. h1( ) =1β  and h1( ) = 1,� �

where � = 1 ( 1) 12 2� � � �A B  and � = 1 ( 1) 1.2 2� � � �A B

Clearly, for every �1 0�  the function h( )ω , defined by (3.9), intersects sin( )��1  only in the rectan-
gle bounded by y = 1, =� � �  and � �= ;  that means, if equation (3.2) has a pair of purly imaginary 
root �i� �0 ( > 0), then � � ��] ; [.

Let � � �1 1, , , , ( 1)… m m �  the solutions of equation (3.10). It follows from A B+ >1  that, for all 
j m∈ { }1,2, ,…  we have

�
�

� �
2

1= 1
j

j

jB
A

arccos
cos( )� ��

�
�

�

�
�

where ( )� �j j, 2  is the solution of the system (3.4) which satisfies � � �j j2 0; [.�]
Let

σ σ2
*

2= , =1, ,min{ } ,j j m…

and ω ω0 = j  such that

�
�

� �
2
*

0

0 1= 1 .arccos cos( )� ��

�
�

�

�
�

B
A (3.14)

Thus, we have:
 1. If σ σ2 2

*< , then all roots of the characteristic equation (3.2) have negative real parts;
 2. If σ σ2 2

*= , then the characteristic equation (3.2) has a pair of purly imaginary root �i�0;
 3. If σ σ2 2

*> , then the characteristic equation (3.2) has at least one root with positive real part.

Lemma 3.8. Suppose that the following assertion hold:

( )H s d s4 2 2 2: (1 2 ) < < (2 1) ,� �� �  

then there exist σ1
* > 0  and σ2

* > 0  such that

 1. If σ σ1 1
*< , and σ σ2 2

*< , then all roots of the characteristic equation (3.2) have negative real parts;
 2. If σ σ1 1

*< , and σ σ2 2
*= , then the characteristic equation (3.2) has a pair of purly imaginary roots 

�i�0 ;
 3. If σ σ1 1

*< , and σ σ2 2
*> , then the characteristic equation (3.2) has at least one root with positive real 

part.

Proof. From (ii) in Lemma (3.3), if d s2 2< (2 1)� �  and σ2 = 0 , then there exists an σ1
* > 0  such that all 

roots of the characteristic equation (3.2) have negative real parts, for all σ σ1 1
*< . If this conclusion 

fails, then there must be some σ2
* > 0  such that equation (3.2) has purly imaginary roots �i� , where 

ω  is a positive solution of the following equation:

h( ) = ,1� ��sin( )

where

h B B A( ) = 2 1
2

.
2

1
2 2

�
� ��

�
� � � �cos( )
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Since |cos( )|��1 1,�  it follows that

h h h1 2( ) ( ) ( ),� � �� �

with h1 and h2 are defined respectively by (3.12) and (3.13).
It is easy to veriy that (1 2 ) < < (2 1)2 2 2� �� �s d s  implies that ( 1) < 02 2B A− −  and ( 1) < 02 2B A� � . 

The proof for the rest of the Lemma is similar to the proof of Lemma (3.7).
Collecting together all this information about characteristic roots of equation (3.2) we have the 

following results.

Theorem 3.9. Assume that ( )H0  holds. Then the positive equilibruim of equation (3.1) is locally 
asymptotically stabe for any � i i� 0, =1;2.

Proof. From Lemma (3.5), the characteristic equation (3.2) have negative real parts for any � i i� 0, =1;2. 
Using de variable changes � �i i i i= , =1;2,�  the results remains true for characteristic equation (3.1), 
for any � i i� 0, =1;2. Thus, the positive equilibruim of equation (3.1) is locally asymptotically stabe.

Theorem 3.10. Suppose that the following assertions ( )H1  and ( )H2  hold. Then there exists an 
�1
*

1
2

= ( )
1 ( )

arccos � �

� �

A B
A B�

 such that if τ τ1 1
*<  the positive equilibruim of equation (3.1) is locally asymptoti-

cally stabe for any �2 0� .

Proof. From Lemma (3.6), if �2 0,�  and � �1 1
*0,�[ ) , then all roots of the characteristic equation (3.2) 

have negative real parts. Using de variable changes � �i i i i= , =1;2,�  the results remains true for 

characteristic equation (5), for any � �1 1
*0,�[ )  and any �2 0� , with �1

*

1
2

= ( )
1 ( )

arccos � �

� �

A B
A B�

. Consequently, 

the positive equilibruim of equation (3.1) is locally asymptotically stabe for any �2 0� , and � �1 1
*0, .�[ )

Theorem 3.11. Suppose that ( )H3  holds. Then there exists � �
2
* 2

*

2
=
�

 such that, the positive equilibruim 

of equation (3.2) is locally asymptotically stabe for any �1 0,�  and τ τ2 2
*< ; where τ2

*  is defined by (3.14).

Proof. From Lemma (3.7), there exists τ2
*  such that, if �1 0�  and � �2 2

*0,�[ ), then all roots of the char-
acteristic equation (3.2) have negative real parts. Using de variable changes � �i i i i= , =1;2� , the 

results remains true for characteristic equation (3.1), for any �1 0,�  and any � �2 2
*0,�[ )  with � �

2
* 2

*

2
= .
�

 

Consequently, the positive equilibruim of equation (3.1) is locally asymptotically stabe for �1 0�  and 
τ τ2 2

*< .

Theorem 3.12. Suppose that ( )H3  holds and τ τ2 2
*= . If one of the following situatios holds:

( ) : 0,
2

( ) :
2

,

5 0 2
*

2

6 0 2
*

2 2

0 2

H

H

� �
�

� �
� � � �

�
�

�
�

�

�
�

�
�

�
�

�

�
�

�

� �
and tan

**

2

0 1 1

1 1
<
1

.
�

�
�

�

�
��

�

�
��

�
�
� �

�

Then, there exists ε0 > 0  such that, for each 0 < 0� � � , equation (3.1) has a family of periodic solu-
tions p( )ε  with period T T= ( )ε  for the parameter values � � �2 2= ( ), such that p T(0) = 0, (0) = 2

0

�
�

 and 

� �
�(0) = = ,2

* 2
*

2�
 where σ2

*  is defined by (3.14) and �i�0  is the purly imaginary roots of equation (3.2) 

corresponding to σ2
*.
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Proof. From Lemma (3.7), there exists τ2
* > 0 , such that, if τ τ2 2

*= , then �i�0  is the purly imaginary 
roots of equation (3.2). Next we show that �i�0  are simple roots of equation (3.2). Set

f B e Ae( ) = ,1 2
*

� � �� ��
� � �

� �

we have

df
d

e A( )�
�

� ��� ��=1 ,1
1

2
* 2

*
� �

� �

and

df i
d

i A i( ) (cos( ) sin( )) (cos( ) s�
�

� � � � � � � �0
1 0 1 0 1 2

*
0 2

*=1 � � � � � � � iin( ))�� �0 2
* .

It’s follows from (3.4) that

d Re f i
d

B A

d Im f i
d

( ( ( )) ( ) cos( )

( ( ( ))

�
�

� � � � �

�
�

�

0
1 1 2

*
0 2

*

0
0

=1 ,

=

� � �

�� � � � �1 1 2
*

0 2
* .� �A( )sin( )

• If � �
�

0 2
* 0;

2
,��

�
�

�

��
 then d Re f i

d
( ( ( ))�

�
0 > 0 or d Im f i

d
( ( ( ))�

�
0 > 0;

• If � �
�

�0 2
*

2
; ,��

�
�

�

��
 we obtain

d Re f i
d

d Im f i
d

( ( ( ))

( ( ( ))

�
�
�

�

0

0

= 0;

= 0,
(3.15)

is equivalent to

cos( ) ( )
( )

sin( )
( )

,

� �
�

� �

� �
� �
� �

0 2
* 1

1 2
*

0 2
* 0 1

1 2
*

= 1 ;

=

� �
�

�

B
A

A

which implies that

tan( )� �
� �
�0 2

* 0 1

1
=
1

.
� B (3.16)

Finaly, we verify the transversally condition. Let � � � � � �( ) ( ) ( )2 2 2= � i  be the root of equation (3.2) 
satisfying � � � � �( ) ( )2

*
2
*

0= 0, = . Differentiating with respect to σ2  on both sides of equation (3.2) gives

d
d

A e

e A e

� �
�

�

� �

��

�� ��

( ) =
1

.2
*

2

2
*

1
1

2
* 2

*

�

� �
� �

(3.17)
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It follows from (3.2) that

�
� �

� � �
� �

� � � � � � � �
� � �

( ) [( )sin( ) cos( )]
[ (2

* 0 1 0 2
*

0 1 0 2
*

1 1
= 1
1

A B
B A 22

*
0 2

* 2
0 1 1 2

*
0 2

* 2 .) cos( )] [ ( )sin( )]� � � � � � � �� � �A

Thus,

• If � �
�

0 2
* 0;

2
,��

�
�

�

��
 then df i

d
( )�
�
0 0�  and �� �( )2

* > 0;

• If � �
�

�0 2
*

2
; ,��

�
�

�

��
 and tan � � � �

�
2 2

*

2

0 1 1

0 1
<
1

,
�

�
�

�

�
��

�

�
��

�
�

 we have df i
d
( )�
�
0 0.�  Also, we have �� �( )2

* > 0.

Using the variable changes � �i i i i= , =1;2,�  the results remains true for characteristic equation (3.1), 

for � �
0
* 0

*

2
= ,
�

 that is, there exists � ��0 a pair of purely imagnary roots of equation (3.1), which completes 

the proof.

4. Numerical Examples

Our current objective is to study the dynamics of the Cobweb model (2.3) when the timing parameters 
vary. For this we propose the following numerical values: � �=1, = 0.8, = 4, = 3, = 0.5, = 2.1 2 1 2d d s s  
We find that the Cobweb model presents an equilibrium price. This equilibrium is a balance of demand 
and supply factors. The numerical simulations lead to one of the following scenarios: damped oscil-
lations, limit cycles, or unstable oscillations. In Figure 1, when the two delays are lower than some 
critical values the equilibrium price is locally asymptotically stable. There is a tendency for prices to 
return in a spiral course to this equilibrium. For critical values of the two delays, we note the birth of 
oscillations of constant amplitude, and also constant proper period whose value depends only on the 
critical values of the delays (see, Figure 2). Finally, Figure 3 shows that time delays can destabilize 
the equilibrium price by giving unstable oscillations.

Figure 1: For ( )τ τ1
*

2
*, = (0.68,0.9), the equilibrium p*  of model (2.3) is locally asymptotically stable.
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5. Conclusion

It is true that the prices of the previous periods determine the quantity produced in the next period 
because the price recorded in the previous period can lead to an imbalance between supply and demand 
(reduction of production if the price was not satisfactory or increase in the quantities produced in the 
opposite case) and then results in a decrease or increase of the current price in the market. In this 
work, we have proposed a Cobweb model with two distinct delays, τ1  and τ2 (indicating the time lag 
between the prices realized in the two previous periods t ��1 and t ��2  and the expected price of the 
period t. First, we use linear stability analysis to find sufficient conditions under which the positive 
equilibrium is locally asymptotically stable. Second, by choosing the two time periods as the bifur-
cation parameter, we prove the existence of a family of periodic solutions that bifurcate from this 
equilibrium. The results improve some results concerning the Hopf bifurcation problem in [12, 16]. 
This analysis of the bifurcation of the proposed model allowed us to conclude that the influence of the 
first time delay τ1  is more important than the influence of the first time delay τ2 because the memory 
(uncertainty and instability) of the majority of producers is shorter and essentially attached to the 
price of the previous period.

Figure 3: For ( )τ τ1
*

2
*, = (0.98,0.9), the equilibrium p*  of model (2.3) is unstable.

Figure 2: For ( )τ τ1
*

2
*, = (0.92,0.9), an oscillating movement occurs around the positive quilibrium p* .
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