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1. Introduction and Background

A sequence space is  a function space whose entries are functions from non-negative integers num-
bers  to the field K of real numbers  or of complex numbers . An interesting topological structures 
of  Banach spaces is visible through Opial property, Fatou property along with their generalization. 
It is the Opial structure which plays a vital role in Banach spaces as such spaces with this property 
attain the weak fixed point property. Recently, the author in [15], 

 p p�( )1 � � �  attains this struc-
ture but the set L p pp[ , ],�( ,� )0 2 2 1� � � � �  does not. Also, the author in [8] proved that any infinite 
dimensional Banach space has an equivalent norm satisfying the Opial property. Further, in [19], the 
author has considered the uniform Opial property for Banach spaces in detail. Later, it was studied 
by various authors as can be seen in [1,2, 13, 17], and many others.

Let � �� ( )r  be a sequence of natural numbers with � � �0 10 0� � � �, r r  and h rr r r� � � � ���� � 1 as . 
Then ϑ is called a lacunary sequence. The intervals computed by ϑ are abbreviated by Jr r r� �( , ]� �1  
and the quotient �

�
r

r�1

 will be symbolized by qr.
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Later, it was studied by different authors as can be seen in [4], [9] and many others for different 
domains. In [10], [11], the author examined geometric structures connecting lacunary sequences with 
Cesàro space by equipping Luxemburg norm.

In [12], the spaces T( )∆  were studied and is defined as follows:
T T( ) { ( ) : ( ) }� � � � � �v v vi i�

where T C� �{ , , } c 0  and � � � �v v vi i i 1.
Next for integer w ≥ 0, the author in [5] had studied the following space:

� �w
k

wv v v c( ) ( ): ,� � , � ,T T T C� � � ��� � � �for and  0

where � � �w
i

w
i

w
iv v v� �� �
�

1 1
1 for all i∈. Also, let g = (gj) be any fixed sequence of non-zero complex 

numbers, then as in [6], we have
� �g
w

j g
w

jv v v( ) ( ) :( ) ,T T� � � �� �

where

� �g
w

j g
w

j g
w

j

w

j jv v v
w
g v j� � � �

�

�
�

�

�
� � �� �

�
�

� ��� �1 1
1

0
1( ) � � .�

�
� ��

It is shown that the space ∆g
s ( )T  is Banach under the norm

v g v vi i g
w

i

w

� �
�

� ��
1

.

Many interesting structures towards this space can be searched in [4, 7, 14, 17, 23] and many others.
As in [20], by ε-separated sequence with ε > 0, we mean a sequence {ζi} ⊂ Λ such that

sep inf{ } : .� � � �j i j i j� � �� � �
By Ω  we denote the space of all real sequences v v j

j
� � � �

�( )
0

and E, �� �  represent subspace
of Ω  and a Banach space. For a unit sphere S( )E  and closed unit ball B( )E , we call a sequence 
( )vn ⊂E is said to be ε-separated sequence for some ε > 0, if separation of sequence (vn) denoted by 
sep( ) inf :v v v n mn n m� � �� � � �  [20].

In [15], the Opial property has been studied and was further studied in [19] and a powerful tool in 
deriving weak or strong convergence of iterative sequences is due to Opial. We call a Banach space E 
to attain the Opial property, if for every weakly null sequence ( )vn ⊂E and every non-zero v∈E , we 
have

lim inf lim inf .
n n n nv v v
�� ��

� �

As in [3], a Banach sequence lattice E attains Fatou property, if for any y��  and sequence ( )yn � �E  
with 

E E� � � �{ : }y y 0
satisfying 0 ≤ y j y jn ( ) ( ) , that is, y jn ( ) increases to y(j) as n ��  for each j∈  and sup

n
ny � �, 

then, y∈E,  and y y
n nE E

�
��

lim .  Let  E be a real vector space, then we call � : [ , ]E� �0  a modular if 
it satisfies:
�
� � � � �

( ) .
( ) ( ) | | .
u u
u u
� �
� � �
0 0

1
if and only if 

for all with F 
�� � � � � � � � �( ) ( ) ( ) , , .u v u v u v� � � � � � �for all and with E 0 1

Moreover, the modular τ  is said to be convex if
� � � �� ��( ) ( ) ( )u v u v� � �



Ganie AH, et al., Results in Nonlinear Anal. 7 (2024), 115–122 117

for all u v, ∈E and � �, � 0 with � �� �1.
For any modular τ  on E, the space

E Ep u u� � � � �� �: ( ) ,� �� � �for�some 0

is called the modular space.
We say a modular τ  satisfies δ2-condition ( )� �� 2  if for any ε > 0, there exists constants A ≥ 2 and  

B > 0 such that
� � �( ) ( )2v A v� �

for all v p∈E  with � ( ) .v B�
Also, we call τ  to satisfy strong δ2-condition ( )� �� 2

s  if  τ  satisfies δ2-condition for all B > 0 with A ≥ 
2 dependent on A.

Throughout the text, we use the following notions:

v v v v r calledastruncationof v atr# � � � �( ), ( ), , ( ), , , � � � � � �1 2 0 0� � rr
v v r v r calledastruncationofr

,
, , , , ( ), ( ), � � �#� � �� � � �� � �0 0 0 1 2 �� � � ,

( ) : ( ) � � � � � ( ) �

v at r

v v v r v r forallr andv r foI r
# � � � � � � �

�

�

1
0 0� rrallr I

suppv r v r

� � \ ,

: ( )

�� �
� � �� �

�

� 0

and clE represents closure of a set E.
Also, by p = (pj) we represent the bounded sequence with pj >1 for all j∈N.

2. The space s g
wp� ,�� �

In this section, we introduce the space s g
wp� ,�� � and show that it attains uniform Opial property,

paranormed structure and some other structures as well.
Following authors as in [1, 22–23], we define the space s g

wp� ,�� � as follows:

s g
wp v v for some

g
w

� � � �, : � � � ,� �
�� � � � � � � � �� �0

where p = (pi) is a sequence of positive real numbers with pi  ≥ 1 for all i g gi� �, ( )  is a sequence 
such that gi ≠ 0 for all i∈ and s > 0 equipped with Luxemburg norm

v v
g
w� �
�

�
�

�

�
� �

�
�
�

�
�
�

inf : ,� �
�

0 1
�

where
�
�

�
g
w

i

i

v g r v r
h

k v k
r

w

i

s

k
g
w

p

i
� � � �

�

�
��

�

�
��

�

�

��

�

� ��| ( ) ( )| ( ) .
1 1

1
J

Theorem 2.1  The functional �
�g
w on s g

wp� ,�� � is convex modular.

Proof. Since gi ≠ 0 for all i∈, we see

�
�

�
g
w

k

k

r

w

k

s

j
g
w

p

k

g r u r
h

j u j� � �
�

�
��

�

�
�� �

�

�

��

�

� ��0 1 0
0 0
| ( ) ( )| ( )

J

�� �
�

�
��

�

�
�� �

�

�

��

�

� ��| ( ) ( )| � � ( )
r

w

k

s

j
g
w

p

k

g r u r
h

j u j
k

k

0 0
0 1and

J

� 00

0 0 1 2 0
0

� � � � � � �

� �

u r r w u j j k
u

g
w

k( ) � � , , ,..., �&� ( ) � ,�
.

for � J 
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It is trivial that � � �
� �g
w

g
wu u( ) ( )�  for all scalars β  with | | .� �1

Using linearity of ∆gw and convexity of map � ��| |pi, and for u v ps g
w, ,� � �� �  with a ≥ 0, b ≥ 0 and  

a + b = 1, we have

�
�

� �
g
w au bv g j au j bv j

h
a u j b v j

j

w

k
g
w

g
w

j

( ) | ( )( ( ) ( )| ( ) ( )� � � �
� �
�=

0

1
JJk

kp

k

j

w

k
gag j u j bg j v j

h
a

��

�

�

�
��

�

�
��

� � �

�

�

�

0

0

1(|( ( ) ( )| | ( ) ( )|) �ww
j

g
w

p

k

j

w

k
g

u j b v j

a g j u j
h

k

k

( ) ( )

| ( ) ( )|

��

�

�

��

�

�
�

�
��

�

�
��

� �

J

�

�

0

0

1 ww

j

p

k j

w

k
gu j b g j v j

h
k

k

( ) � | ( ) ( )|
��

�

�
�� �

�

�
��

�

�
��

�

�
�
�

�



�
�
� �

J0 0

1
�ww

j

p

k

v j

a u b v
k

k

g
w

g
w

( )

( ) ( ).
��

�

��
�

�
��

�

�
��

�

�
�
�

�



�
�

� �

J0

� �
� �

This shows that �
�g
w is a convex modular on s g

wp� ,�� �. ◊
We state the following important results Theorem 2.2 and Theorem 2.3 with out proof as are direct 

consequences of Theorem 2.1:

Theorem 2.2 For u ps g
w� � �� ,� , the modular �

�g
w on s g

wp� ,�� � satisfies the following properties:

( ) , ( ) ( ).i u u u uw

g
w

g
w

g
w

g
wif then and0 1� �

�

�
�

�

�
� � � � �� � �

�
� � � ��

� � � �

(( ) , .

( ) ,

ii u u

iii

g
w

g
w

wif then 

if then 

� � � �
�

� �

� � � � �

�
�

�

�
�

�

1

1

� �

�� � �

�

g
w

g
w

g
w

g
w

u u u

iv u u u

v u

� � � � � � � �
� � � �

�� � �

�

.

( ) , .

( )

if then 

if

  1

  

 

� � � �
� � � �
1

1 1

, .

( ) , .

then 

if then 

�

�

�

�

g
w

g
w

u u

vi u u

Theorem 2.3 For any u v ps g
w, ,� � �� � , if �

�
�

g
w

s� 2 , then for any L > 0 and ε > 0, there exists δ > 0 such 
that

� � �
� �g
w

g
wu v u( ) ( ) ,� � �

with and� � �
� �g
w

g
wu L v� � � � � � .

Theorem 2.4

( ) , , ,i u p u
g
w

s
s g

wIf  then for any  if and only � �

�
� �� � � � �2 1 iif

,If  then for any 

�

� �

�

�
� �

g
w

g
wii u p us

n s g
w

n

�

� � � �
0

2

.

( ) ( ) , , �� �

� �

0 0

2

 if and only if

,If  then for any

�

� � �

�

�
�

g
w

g
wiii s

.

( ) (�� � � �) .� � � � �0 1 1such that whenever u
g
w�
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Theorem 2.5 For M H� �� �max sup pi i1, , the space s g
wp� ,�� � is complete paranormed space (not

 necessarily total paranormed) with

G
J

� �g
w

i
g
w

k

u g j u j
h

k u k
j

w

i

s

k

p

i

( ) | ( ) ( )| ( )� �
�

�
��

�

�
��

�

�

��

�

� ��
0 0

1
�

��

�

�
�

�

�

�
�

1
M

.

Proof. Using classical techniques, it can be proved and hence is omitted.

Theorem 2.6 The space s g
wp� ,�� � attains Fatou property.

For j∈, we suppose that u pj s g
w� � �� ,�  and let  � � �sup

j
ju  and 0 ≤ u i u ij ( ) ( )  as j �� for 

each i∈. Set B = sup ,
n

nu  and since un � � �B  for n∈, so that 0 ≤ ≤
u u

u
n n

nB
. Thus, �

�g
w

u
u
n

n

�1 

and since �
�g
w is monotone, we get

� �
� �g
w

g
w

u u
u

n n

nB

�

�
�

�

�
�

�

�
��

�

�
��� �1.

Employing the Beppo Levi theorem (see, [18]) and the fact that B B� �� ��1 1u u nn as , we see that

� � �
� � �g
w

g
w

g
w

u u u
n

n

n

n

B B B

�
�
�

�
�
�

�

�
�

�

�
�

�

�
�

�

�
�� � �

��
lim sup .1

This shows that u ≤B  and un� �  is non-decreasing, so we have u u nn
n

n� � ��B sup .as 
Now, we have by using norm definition that

u u

u j
h

n
n

j

w
n

k

g
w� �
�

�
�

�

�
� �

�
�
�

�
�
�

� � �
�
�

inf :�

inf :� ( )| |

� 

�

�
�

0 1

0 1
0

�

kk
u js

j

g
w

n

p
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k
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0
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k
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� ���
�

�
��
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�
�� �

�
�
�
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�
�
�
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�

�


�

	( ) ( )

i

|
� �

1 1
0 J

�

nnf :� .� 

�

�
�

�
�

�

�
� �

�
�
�

�
�
�
�0 1

�g
w

u un

Consequently, we see that sup .
n

nu u≤ Hence, we conclude that u u u
n

n n n� �
��

sup lim .

Theorem 2.7 If limsupr pr < ∞, then the space s g
wp� ,�� � has uniform Opial property.

proof. Let � � 0 be any arbitrary number and u ps g
w� � �� ,�  with u � �. Let (un) be any weakly null 

sequence in S Ls g
wp� , .�� �� �

Since, limsupr pr < ∞, that is, � �
�g
w

s� 2 , by Theorem 2.4(ii), for each � � 0, there is a � � ( , )0 1  such that 

for each u ps g
w� � �� ,�  we have � �

�g
w u� � � .

Again, since � �
�g
w

s� 2 , by Theorem 2.3 for any � � 0, there is a � �1 0� ( , )  such that
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� �
�

� �g
w

g
wx y x�� � � � � � 4

,  (1)

whenever � � � �

� �
�

g
w

g
wx y u w ps g

w� � � � � � � � �1 and and , , .

Since �
�g
w u� � � �, so there exists a natural number J0 such that

g j u j
h

k u k
j

w

i

s

k
g
w

p

i i

i

( ) ( ) ( ) .
�

�

��

�

� ���
�

�
��

�

�
�� �

0

11
4

0 JJ

�
� (2)

From (2), it follows that

� � �
�

�
��

�

�
�� �

�

�

��

�� ��g j u j
h

k u k
h

k
j

w

i

s

k
g
w

p

i i

s

ki

i

( ) ( ) ( )
0 0

1 10

J

J

�
��� �

�

�

�

��

�

�

�
��

�

�
��

�
�

�
��

�

�
��

JJ

J

i

i

i

g
w

p

i

i

s

k
g
w

p

u k

h
k u k

�

�

( )

( )

0 1

1 ii

i�
� �

0

1
0

4

J �

giving

1
4 4

3
40

1
0

h
k u k

i

s

k
g
w

p

i i

i

�

��
��

�

�
��

�

�
�� � � � � �

J

J

� ( ) .�
�

�
� �  (3)

By the linearity of the operator ∆gw and weak convergence implies coordinatewise convergence, that 
is, un → 0 weakly implies u in ( ) → 0  for each i∈,$ so there exists n0 ∈ such that for all n n≥ 0 , we get

1 3
40

0

h
k u k u k

i

s

k
g
w

n g
w

p

i i

i

�

��
�� �

�

�
��

�

�
�� �

J

J

� �( ) ( ) .� (4)

Again, using the fact that unw → 0, we can choose J0 such that

�
�g
w u asn

J0
0� � � ��� � .

So, there exists a n1 > n0 such that

� �
�g
w u n n

J0 1 1� � � �� � .for�all

Because ( ) , ,u S pn s g
w� � �� �� �  that is, u =1, so by Theorem 2.3(i), we have �

�g
w u

J0
1� � � .  This implies

that there exists J0 such that

�
�g
w u

�� � �J0
1.

Now choose v J� �un  0
 and w

J
= un 0

. Then, � � � �

� �
�

g
w

g
w s g

wpv w v w� � � � � � � � �1 1 and  for , , .  So from 

equation (1), for all n ≥ n1, we have

� �
�

� �g
w

g
wu u un n n

 � �
�� � � � � �J J J0 0 0 4

,

which implies that 

�
�

�
� �g
w

g
wu u for all n nn n� � � � � � �

�4 0 1
 J

� � � .
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That is,

u i
h

k u k forn
i

w

i

s

k
g
w

n

p

i i

i

( ) ( ) � �
�

�

�� �

�

� ���
�

�
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�

�
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0 1

1 1
4

0 JJ

�
� aall n n� .� 1 (5)

Again, since � �
�

�
� �g
w

g
wu un n

 � �� � � � � � �
J J0 0

1
4

1
1 and ,  so from (1), we have

� �
�

� �g
w

g
wu u un n

  � � �
�� � � � � �J J J0 0 0 4

which shows that
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w

g
wu u un n

  � � �
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. (6)

Now, from equations (4–6) and the linearity property of the operator ∆gw, we have
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Since, � �
�g
w

s� 2, so by Lemma 2.3(ii), there is a � � 0 such that u un � � �1 �, hence for n �� that

lim inf .u un � � �1 �

Choosing different values of m, s, g, we have following deductions:
Deduction 2.8 Choosing s = 0 and g = 1, the space s g

wp� ,�� � then reduced to what has been intro-
duced in [11]. 

Deduction 2.9 Choosing s = 0, w = 0, g = 1 and ϑ = (2r), the space s g
wp� ,�� � then reduced to what

has been introduced in [22]. 
Deduction 2.10 Choosing w = 0 and g = 0, the space s g

wp� ,�� � then reduced to what has been
introduced in [16]. 

Deduction 2.11 Choosing s = 0, w = 1, g = 0, pr = p and ϑ = (2r) for all r∈, the space s g
wp� ,�� �

then reduced to what has been introduced in [21]. 
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