Results in Nonlinear Analysis 7 (2024) No. 4, 115–122 https://doi.org/10.31838/rna/2024.07.04.012 Available online at www.nonlinear-analysis.com

Peer Reviewed Scientific Journal

ISSN 2636-7556

A new structure of spaces using the framework of generalized Δ -operator method

Abdul Hamid Ganie¹, Aesha Mohammad Najem², Dowlath Fathima³

1,2,3Department of Basic Science, College of Science and Theoretical Studies, Saudi Electronic University, Zip Code 11673, Riyadh, Saudi Arabia

The focus of the study in the this paper is to introduce the space $\mathcal{L}_{s}^{g}(p, \Delta_{g}^{w})$. The corresponding completeness property will be determined. Also, various topological properties will be enlightened. *Key words and phrases:* Beppo–Levi's space; Paranormed spaces; Lacunary sequences *Mathematics Subject Classification (2020):* 46B45; 46A45; 46B99.

1. Introduction and Background

A sequence space is a function space whose entries are functions from non-negative integers numbers N to the field K of real numbers $\mathbb R$ or of complex numbers $\mathbb C$. An interesting topological structures of Banach spaces is visible through Opial property, Fatou property along with their generalization. It is the Opial structure which plays a vital role in Banach spaces as such spaces with this property attain the weak fixed point property. Recently, the author in [15], ℓ_p (1 < p < ∞) attains this structure but the set $L_p[0, 2\pi]$, $(p \neq 2, 1 < p < \infty)$ does not. Also, the author in [8] proved that any infinite dimensional Banach space has an equivalent norm satisfying the Opial property. Further, in [19], the author has considered the uniform Opial property for Banach spaces in detail. Later, it was studied by various authors as can be seen in [1,2, 13, 17], and many others.

Let $\theta = (\kappa_r)$ be a sequence of natural numbers with $\kappa_0 = 0$, $0 < \kappa_r < \kappa_{r+1}$ and $h_r = \kappa_r - \kappa_{r-1} \to \infty$ as $r \to \infty$. Then 9 is called a lacunary sequence. The intervals computed by 9 are abbreviated by $\mathfrak{J}_r = (\kappa_{r-1}, \kappa_r)$ and the quotient $\frac{\kappa}{\kappa}$ *r* $\frac{\mathbf{x}_r}{x_{r-1}}$ will be symbolized by q_r .

Email addresses: a.ganie@seu.edu.sa (Abdul Hamid Ganie); a.najem@seu.edu.sa (Aesha Mohammad Najem); d.fathima@ seu.edu.sa (Dowlath Fathima)

Later, it was studied by different authors as can be seen in [4], [9] and many others for different domains. In [10], [11], the author examined geometric structures connecting lacunary sequences with Cesàro space by equipping Luxemburg norm.

In [12], the spaces $\mathfrak{T}(\Delta)$ were studied and is defined as follows:

$$
\mathfrak{T}(\Delta) = \{v = (v_i) \in \Lambda : (\Delta v_i) \in \mathfrak{T}\}\
$$

where $\mathfrak{T} \in \{ \ell_{\infty}, c, \mathfrak{C}_0 \}$ and $\Delta v_i = v_i - v_{i-1}$.

Next for integer $w \ge 0$, the author in [5] had studied the following space:

$$
\Delta^{w}(\mathfrak{T}) = \Big\{ v = (v_{k}) : (\Delta^{w} v) \in \mathfrak{T} \Big\}, \text{for } \mathfrak{T} = \ell_{\infty}, c \text{ and } \mathfrak{C}_{0},
$$

where $\Delta^w v_i = \Delta^{w-1} v_i - \Delta^{w-1} v_{i+1}$ for all $i \in \mathbb{N}$. Also, let $g = (g_j)$ be any fixed sequence of non-zero complex numbers, then as in [6], we have

$$
\Delta_{g}^{w}(\mathfrak{T}) = \left\{ v = (v_{j}) \in \Lambda : (\Delta_{g}^{w} v_{j}) \in \mathfrak{T} \right\},\
$$

where

$$
\Delta_{g}^{w}v_{j} = \Delta_{g}^{w-1}v_{j} - \Delta_{g}^{w-1}v_{j+1} = \sum_{\mu=0}^{w} (-1)^{\mu} {w \choose \mu} g_{j+\mu}v_{j+\mu} \ \forall \ j \in \mathbb{N}.
$$

It is shown that the space $\Delta_g^s(\mathfrak{T})$ is Banach under the norm

$$
\left\|v\right\|_{\mathbf{A}}=\sum_{i=1}^{w}\left|{\mathcal{S}}_{i}v_{i}\right|+\left\|_{\mathbf{g}}^{w}v\right\|_{\infty}.
$$

Many interesting structures towards this space can be searched in [4, 7, 14, 17, 23] and many others.

As in [20], by ε -separated sequence with $\varepsilon > 0$, we mean a sequence $\{\zeta_i\} \subset \Lambda$ such that

$$
\mathrm{sep}\{\zeta_j\}=\mathrm{inf}\left\{\left\|\zeta_i-\zeta_j\right\|:i\neq j\right\}>\varepsilon.
$$

By Ω we denote the space of all real sequences $v = (v(j))_{j=0}^{\infty}$ and $(\mathfrak{E}, \| \|)$ represent subspace of Ω and a Banach space. For a unit sphere $S(\mathfrak{E})$ and closed unit ball $B(\mathfrak{E})$, we call a sequence $(v_n) \subset \mathfrak{E}$ is said to be *ε*-separated sequence for some $\varepsilon > 0$, if separation of sequence (v_n) denoted by $\sup(v_n) = \inf \{ \|v_n - v_m\| : n \neq m \} > \varepsilon$ [20].

In [15], the Opial property has been studied and was further studied in [19] and a powerful tool in deriving weak or strong convergence of iterative sequences is due to Opial. We call a Banach space E to attain the Opial property, if for every weakly null sequence $(v_n) \subset \mathfrak{E}$ and every non-zero $v \in \mathfrak{E}$, we have

 $\liminf_{n\to\infty}$ $||v_n|| < \liminf_{n\to\infty}$ $||v_n + v||$.

As in [3], a Banach sequence lattice $\mathfrak E$ attains Fatou property, if for any $y \in \Omega$ and sequence $(y_n) \subset \mathfrak E$. with

$$
\mathfrak{E}_+ = \{y \in \mathfrak{E} : y \ge 0\}
$$

satisfying $0 \le y_n(j) \nearrow y(j)$, that is, $y_n(j)$ increases to $y(j)$ as $n \to \infty$ for each $j \in \mathbb{N}$ and $\sup_n ||y_n|| < \infty$, then, $y \in \mathfrak{E}$, and $||y||_{\mathfrak{E}} = \lim_{n \to \infty} ||y_n||_{\mathfrak{E}}$. Let \mathfrak{E} be a real vector space, then we call $\tau : \mathfrak{E} \to [0, \infty]$ a modular if it satisfies:

 $\psi(u) = 0$ if and only if $u = 0$.

$$
\tau(\kappa u) = \tau(u) \text{ for all } \kappa \in \mathcal{F} \text{ with } |\kappa| = 1.
$$

 $\tau(\kappa u + \lambda v) \leq \tau(u) + \tau(v)$ for all $u, v \in \mathfrak{E}$ and $\kappa, \lambda \geq 0$ with $\kappa + \lambda = 1$.

Moreover, the modular τ is said to be convex if

$$
\tau(\kappa u + \lambda v) \leq \kappa \tau(u) + \lambda \tau(v)
$$

for all $u, v \in \mathfrak{E}$ and $\kappa, \lambda \geq 0$ with $\kappa + \lambda = 1$.

For any modular τ on \mathfrak{E} , the space

 $\mathfrak{E}_p = \{u \in \mathfrak{E} : \tau(\kappa u) < \infty, \text{ for some } \kappa > 0\}$

is called the modular space.

We say a modular τ satisfies δ_2 -condition ($\tau \in \delta_2$) if for any $\varepsilon > 0$, there exists constants $A \ge 2$ and $B > 0$ such that

$$
\tau(2v) \le A\tau(v) + \varepsilon
$$

for all $v \in \mathfrak{E}_p$ with $\tau(v) \leq B$.

Also, we call τ to satisfy strong δ_2 -condition $(\tau \in \delta_2^s)$ if τ satisfies δ_2 -condition for all $B > 0$ with $A \ge$ 2 dependent on *A*.

Throughout the text, we use the following notions:

$$
v#_{\overline{r}} = (v(1), v(2), \cdots, v(r), 0, 0, \cdots) - called \, a structuralion \, of \, v \, at \, r,
$$
\n
$$
v#_{\overline{N-r}} = (0, 0, \cdots, 0, v(r+1), v(r+2), \cdots) - called \, a structuralion \, of \, v \, at \, r,
$$
\n
$$
v#_{\overline{r}} = \left\{ v = (v(r))_{r=1}^{\infty} : v(r) \neq 0 \right\} \text{ for all } r \in \mathbb{N} \text{ and } v(r) = 0 \, for \, all \, r \in \mathbb{N} \setminus I \right\},
$$
\n
$$
suppv = \left\{ r \in \mathbb{N} : v(r) \neq 0 \right\}
$$

and $\partial \mathfrak{E}$ represents closure of a set \mathfrak{E} .

Also, by $p = (p_j)$ we represent the bounded sequence with $p_j > 1$ for all $j \in N$.

2. The space $\mathcal{L}_{s}^{\vartheta}\left(p, \mathcal{L}_{g}^{w}\right)$

In this section, we introduce the space $\mathcal{L}_{s}^{\varrho}(p, \Delta_{g}^{w})$ and show that it attains uniform Opial property, paranormed structure and some other structures as well.

Following authors as in [1, 22–23], we define the space $\mathcal{L}_{s}^{\vartheta}(p, \Delta_{g}^{w})$ as follows:

$$
\mathcal{L}^9_s\left(p,\varDelta_{g}^{w}\right)=\left\{v\in\varOmega:\tau_{\varDelta_{g}^{w}}\left(\gamma v\right)<\infty\text{ for some }\gamma>0\right\},
$$

where $p = (p_i)$ is a sequence of positive real numbers with $p_i \ge 1$ for all $i \in \mathbb{N}$, $g = (g_i)$ is a sequence such that $g_i \neq 0$ for all $i \in \mathbb{N}$ and $s > 0$ equipped with Luxemburg norm

$$
||v|| = \inf \left\{ \gamma > 0 : \tau_{\frac{\Delta_w^w}{\gamma}} \left(\frac{v}{\gamma} \right) \le 1 \right\},\
$$

where

$$
\tau_{\Delta_{\mathcal{B}}^{w}}\left(v\right)=\sum_{r=1}^{w}\left|g(r)v(r)\right|+\sum_{i=1}^{\infty}\left(\frac{1}{h_{i}}\sum_{k\in\mathfrak{J}_{i}}k^{-s}\left|\Delta_{\mathcal{B}}^{w}v(k)\right|\right)^{p_{i}}.
$$

Theorem 2.1 The functional $\tau_{A_g^w}$ on $\mathcal{L}_s^9\left(p, \mathcal{A}_g^w\right)$ is convex modular.

Proof. Since $g_i \neq 0$ for all $i \in \mathbb{N}$, we see

$$
\tau_{\Delta_g^w} = 0 \Leftrightarrow \sum_{r=0}^w |g(r)u(r)| + \sum_{k=0}^\infty \left(\frac{1}{h_k} \sum_{j \in \mathfrak{J}_k} j^{-s} |\Delta_g^w u(j)|\right)^{p_k} = 0
$$

$$
\Leftrightarrow \sum_{r=0}^w |g(r)u(r)| = 0 \text{ and } \sum_{k=0}^\infty \left(\frac{1}{h_k} \sum_{j \in \mathfrak{J}_k} j^{-s} |\Delta_g^w u(j)|\right)^{p_k} = 0
$$

$$
\Leftrightarrow u(r) = 0 \text{ for } r = 0, 1, 2, ..., w \& \Delta_g^w u(j) = 0 \forall j \in \mathfrak{J}_k, k \in \mathbb{N}
$$

$$
\Leftrightarrow u = 0.
$$

It is trivial that $\tau_{A_g^w}(\beta u) = \tau_{A_g^w}(u)$ for all scalars β with $|\beta| = 1$.

Using linearity of Δ_g^w and convexity of map $\tau \to |\tau|^{p_i}$, and for $u, v \in \mathcal{L}_s^9(p, \Delta_g^w)$ with $a \ge 0, b \ge 0$ and $a + b = 1$, we have

$$
\tau_{A_g^w}(au + bv) = \sum_{j=0}^w |g(j)(au(j) + bv(j)| + \sum_{k=0}^{\infty} \left(\frac{1}{h_k} \sum_{j \in J_k} \left| a A_g^w u(j) + b A_g^w v(j) \right| \right)^{p_k}
$$
\n
$$
\leq \sum_{j=0}^w \left(|(ag(j)u(j)| + |bg(j)v(j)|) + \sum_{k=0}^{\infty} \left(\frac{1}{h_k} \sum_{j \in J_k} \left| a A_g^w u(j) \right| + \left| b A_g^w v(j) \right| \right)^{p_k}
$$
\n
$$
\leq a \left[\sum_{j=0}^w |g(j)u(j)| + \sum_{k=0}^{\infty} \left(\frac{1}{h_k} \sum_{j \in J_k} \left| A_g^w u(j) \right| \right)^{p_k} \right] + b \left[\sum_{j=0}^w |g(j)v(j)| + \sum_{k=0}^{\infty} \left(\frac{1}{h_k} \sum_{j \in J_k} \left| A_g^w v(j) \right| \right)^{p_k} \right]
$$
\n
$$
= a \tau_{A_g^w}(u) + b \tau_{A_g^w}(v).
$$

This shows that $\tau_{_{\Delta_{g}^w}}$ is a convex modular on $\mathcal{L}^9_s\left(p,\mathcal{A}^w_g\right)$. \Diamond

We state the following important results Theorem 2.2 and Theorem 2.3 with out proof as are direct consequences of Theorem 2.1:

Theorem 2.2 For $u \in \mathcal{L}_s^g(p, \Delta_g^w)$, the modular $\tau_{\Delta_g^w}$ on $\mathcal{L}_s^g(p, \Delta_g^w)$ satisfies the following properties:

(i) if
$$
0 < \beta < 1
$$
, then $\beta^w \tau_{A_g^w} \left(\frac{u}{\beta}\right) \le \tau_{A_g^w}(u)$ and $\tau_{A_g^w}(\beta u) \le \beta \tau_{A_g^w}(u)$.
\n(ii) if $\beta > 1$, then $\tau_{A_g^w}(u) \le \beta^w \tau_{A_g^w}\left(\frac{u}{\beta}\right)$.
\n(iii) if $\beta \ge 1$, then $\tau_{A_g^w}(u) \le \beta \tau_{A_g^w}(u) \le \tau_{A_g^w}(\beta u)$.
\n(iv) if $||u|| < 1$, then $\tau_{A_g^w}(u) \le ||u||$.
\n(v) if $||u|| > 1$, then $\tau_{A_g^w}(u) \ge ||u||$.
\n(vi) if $||u|| = 1$, then $\tau_{A_g^w}(u) = 1$.

Theorem 2.3 For any $u, v \in \mathcal{L}_s^9(p, \Delta_g^w)$, if $\tau_{\Delta_g^w} \in \Delta_s^8$, then for any $L > 0$ and $\varepsilon > 0$, there exists $\delta > 0$ such that

$$
\left|\tau_{_{\Delta_{g}^{w}}}(u+v)-\tau_{_{\Delta_{g}^{w}}}(u)\right|<\varepsilon,
$$

 $\mathrm{with}~\tau_{\scriptscriptstyle{A^w_\mathcal{B}}}(u) \!\leq\! L \text{ and } \tau_{\scriptscriptstyle{A^w_\mathcal{B}}}(v) \!\leq\! \delta.$

Theorem 2.4

\n- (i) If
$$
\tau_{\Delta_g^w} \in \Delta_2^s
$$
, then for any $u \in \mathcal{L}_s^9(p, \Delta_g^w)$, $||u|| = 1$ if and only if $\tau_{\Delta_g^w} = 0$.
\n- (ii) If $\tau_{\Delta_g^w} \in \Delta_2^s$, then for any $(u_n) \in \mathcal{L}_s^9(p, \Delta_g^w)$, $||u_n|| \to 0$ if and only if $\tau_{\Delta_g^w} \to 0$.
\n- (iii) If $\tau_{\Delta_g^w} \in \Delta_2^s$, then for any $\delta = \delta(\varepsilon) > 0$ such that $||u|| \geq 1 + \delta$ whenever $\tau_{\Delta_g^w} \geq 1 + \varepsilon$.
\n

Theorem 2.5 For $\mathfrak{M} = max(1, \mathfrak{H} = sup_i p_i)$, the space $\mathcal{L}_s^{\vartheta}(p, \Delta_g^w)$ is complete paranormed space (not necessarily total paranormed) with

$$
\mathfrak{G}_{\Delta_{g}^w}(u) = \sum_{j=0}^w |g(j)u(j)| + \left(\sum_{i=0}^{\infty} \left(\frac{1}{h_i}\sum_{k \in \mathfrak{J}_i} k^{-s}\left|\tau_{\Delta_{g}^w} u(k)\right|\right)^{p_k}\right)^{\frac{1}{\mathfrak{M}}}.
$$

Proof. Using classical techniques, it can be proved and hence is omitted.

Theorem 2.6 The space $\mathcal{L}_s^g(p, \Delta_g^w)$ attains Fatou property.

For $j \in \mathbb{N}$, we suppose that $u_j \in \mathcal{L}_s^g(p, \Delta_g^w)$ and let $\mathcal{H} = \sup_j ||u_j|| < \infty$ and $0 \le u_j(i) \nearrow u(i)$ as $j \to \infty$ for each $i \in \mathbb{N}$. Set $\mathfrak{B} = \sup_{n} ||u_n||$, and since $||u_n|| \leq \mathfrak{B} < \infty$ for $n \in \mathbb{N}$, so that $0 \leq \frac{u_n}{\mathfrak{B}} \leq \frac{u_n}{||u_n||}$ *u* $n \geqslant n$ $\frac{d_{n}}{B} \leq \frac{d_{n}}{\|u_{n}\|}$. Thus, $\tau_{\Delta_{g}^{\mu}}$ *u u n n* \leq 1 and since $\tau_{A_g^w}$ is monotone, we get

$$
\tau_{\mathbf{A}^w_g}\left(\frac{u_n}{\mathfrak{B}}\right) \leq \tau_{\mathbf{A}^w_g}\left(\frac{u_n}{\left\|u_n\right\|}\right) \leq 1.
$$

Employing the Beppo Levi theorem (see, [18]) and the fact that $\mathfrak{B}^{-1}u_n \to \mathfrak{B}^{-1}u$ as $n \to \infty$, we see that

$$
\tau_{\Delta_g^w}\left(\frac{u}{\mathfrak{B}}\right) = \lim_{n \to \infty} \tau_{\Delta_g^w}\left(\frac{u_n}{\mathfrak{B}}\right) = \sup_n \tau_{\Delta_g^w}\left(\frac{u_n}{\mathfrak{B}}\right) \le 1.
$$

This shows that $||u|| \leq \mathfrak{B}$ and $(||u_n||)$ is non-decreasing, so we have $||u_n|| \to \mathfrak{B} = \sup_n ||u_n||$ as $n \to \infty$. Now, we have by using norm definition that

$$
\|u_{n}\| = \inf\left\{\lambda > 0 : \tau_{\Delta_{g}^{w}}\left(\frac{u_{n}}{\lambda}\right) \leq 1\right\}
$$

\n
$$
= \inf\left\{\lambda > 0 : \sum_{j=0}^{w} \left|\frac{u_{n}(j)}{\lambda}\right| + \sum_{k=0}^{\infty} \left(\frac{1}{h_{k}} \sum_{j \in \mathfrak{J}_{k}} k^{-s} \left|\frac{\Delta_{g}^{w} u_{n}(j)}{\lambda}\right|\right)^{p_{k}} \leq 1\right\}
$$

\n
$$
\leq \inf\left\{\lambda > 0 : \sum_{j=0}^{w} \left|\frac{u(j)}{\lambda}\right| + \sum_{k=0}^{\infty} \left(\frac{1}{h_{k}} \sum_{j \in \mathfrak{J}_{k}} k^{-s} \left|\frac{\Delta_{g}^{w} u(j)}{\lambda}\right|\right)^{p_{k}} \leq 1\right\}
$$

\n
$$
= \inf\left\{\lambda > 0 : \tau_{\Delta_{g}^{w}}\left(\frac{u_{n}}{\lambda}\right) \leq 1\right\} = \|u\|.
$$

Consequently, we see that $\sup_n \|u_n\| \le \|u\|$. Hence, we conclude that $\|u\| = \sup_n \|u_n\| = \lim_{n \to \infty} \|u_n\|$.

Theorem 2.7 If $limsup_p p_r < \infty$, then the space $\mathcal{L}_s^g(p, \Delta_g^w)$ has uniform Opial property.

proof. Let $\varepsilon > 0$ be any arbitrary number and $u \in \mathcal{L}_s^9(p, \Delta_g^w)$ with $||u|| \ge \varepsilon$. Let (u_n) be any weakly null sequence in $\mathcal{S}\big(\mathcal{L}^g_s\big(p, \mathcal{A}^w_g\big)\big).$

Since, $limsup_{p \to \infty} \cos \theta$, that is, $\tau_{A_g^w} \in \delta_2^s$, by Theorem 2.4(ii), for each $\varepsilon > 0$, there is a $\delta \in (0,1)$ such that for each $u \in \mathcal{L}^9_s\left(p, \mathcal{\Delta}_{g}^w\right)$ we have $\tau_{\mathcal{\Delta}_{g}^w}\left(u\right) \geq \delta$.

Again, since $\tau_{\alpha_{\xi}^w} \in \delta_2^s$, by Theorem 2.3 for any $\varepsilon > 0$, there is a $\delta_1 \in (0, \delta)$ such that

$$
\left|\tau_{\Delta_g^w}\left(x+y\right)-\tau_{\Delta_g^w}\left(x\right)\right|<\frac{\delta}{4}\,,\tag{1}
$$

whenever $\tau_{A_g^w}(x) \leq 1$ and $\tau_{A_g^w}(y) \leq \delta$ and $u, w \in \mathcal{L}_s^9\left(p, \Delta_g^w\right)$.

Since $\tau_{a_{\rm g}^w}(u)$ < ∞ , so there exists a natural number \mathfrak{J}_0 such that *w* $\bigg\}$ œ

$$
\sum_{j=0}^{w} |g(j)u(j)| + \sum_{i=3}^{\infty} \left(\frac{1}{h_i} \sum_{k \in \mathfrak{J}_i} k^{-s} \left| \Delta_g^w u(k) \right| \right)^{p_i} \le \frac{\delta_1}{4}.
$$
 (2)

From (2), it follows that

$$
\delta \leq \sum_{j=0}^w \left| g(j)u(j)\right| + \sum_{i=0}^{3_0} \left(\frac{1}{h_i} \sum_{k \in \mathfrak{J}_i} k^{-s} \left| \Delta_g^w u(k) \right| \right)^{p_i} + \sum_{i=3_0+1}^{\infty} \left(\frac{1}{h_i} \sum_{k \in \mathfrak{J}_i} k^{-s} \left| \Delta_g^w u(k) \right| \right)^{p_i}
$$

$$
\leq \sum_{i=0}^{3_0} \left(\frac{1}{h_i} \sum_{k \in \mathfrak{J}_i} k^{-s} \left| \Delta_g^w u(k) \right| \right)^{p_i} + \frac{\delta_1}{4}
$$

giving

$$
\sum_{i=0}^{3_0} \left(\frac{1}{h_i} \sum_{k \in \mathfrak{J}_i} k^{-s} \left| \Delta_g^w u(k) \right| \right)^{p_i} \ge \delta - \frac{\delta_1}{4} > \delta - \frac{\delta}{4} = \frac{3\delta}{4}.
$$
\n⁽³⁾

By the linearity of the operator Δ_g^w and weak convergence implies coordinatewise convergence, that is, $u_n \to 0$ weakly implies $u_n(i) \to 0$ for each $i \in \mathbb{N},$ so there exists $n_0 \in \mathbb{N}$ such that for all $n \geq n_0$, we get

$$
\sum_{i=0}^{3_0} \left(\frac{1}{h_i} \sum_{k \in \mathfrak{J}_i} k^{-s} \left| \Delta_g^w u_n(k) + \Delta_g^w u(k) \right| \right)^{p_i} > \frac{3\delta}{4} \,. \tag{4}
$$

Again, using the fact that $u_n^w \to 0$, we can choose \mathfrak{J}_0 such that

$$
\tau_{\Delta_{g}^w}\left(u\big|_{\mathfrak{J}_0}\right) \to 0 \, as \, n \to \infty.
$$

So, there exists a $n_1 > n_0$ such that

$$
\tau_{\Delta_{g}^{w}}\left(u\big|_{\mathfrak{J}_{0}}\right)\leq\delta_{1}\text{ for all }n\geq n_{1}.
$$

Because $(u_n) \in S\left(\mathcal{L}_s^9\left(p, \mathcal{A}_s^w\right)\right)$, that is, $\|u\| = 1$, so by Theorem 2.3(i), we have $\tau_{\mathcal{A}_s^w}\left(u\big|_{\mathfrak{J}_0}\right) = 1$. This implies that there exists \mathfrak{J}_0 such that

$$
\tau_{\Delta_{g}^{w}}\left(u\big|_{\mathbb{N}-\mathfrak{J}_{0}}\right) \leq 1.
$$

Now choose $\mathfrak{v} = u_n \big|_{\mathbb{N} - \mathfrak{J}_0}$ and $\mathfrak{w} = u_n \big|_{\mathfrak{J}_0}$. Then, $\tau_{\mathcal{A}^w_g}(\mathfrak{v}) \leq 1$ and $\tau_{\mathcal{A}^w_g}(\mathfrak{w}) \leq \delta_1$ for $\mathfrak{v}, \mathfrak{w} \in \mathcal{L}_s^9(p, \mathcal{A}^w_g)$. So from equation (1), for all $n \geq n_1$, we have

$$
\left|\tau_{\Delta_{g}^{w}}\left(u_{n}\big|_{\mathbb{N}-\mathfrak{J}_{0}}+u_{n}\big|_{\mathfrak{J}_{0}}\right)-\tau_{\Delta_{g}^{w}}\left(u_{n}\big|_{\mathbb{N}-\mathfrak{J}_{0}}\right)\right|<\frac{\delta}{4},
$$

which implies that

$$
\tau_{\Delta_g^w}(u_n)-\frac{\delta}{4}<\tau_{\Delta_g^w}(u_n|_{\mathbb{N}-\mathfrak{J}_0})\ \ for\ all\ \ n\geq n_1.
$$

That is,

$$
\sum_{i=0}^{w} |u_n(i)| + \sum_{i=3_0+1}^{\infty} \left(\frac{1}{h_i} \sum_{k \in \mathfrak{J}_i} k^{-s} \left| \Delta_g^w u_n(k) \right| \right)^{p_i} > 1 - \frac{\delta}{4} \text{ for all } n \ge n_1.
$$
 (5)

 $\text{Again, since }\tau_{\mathcal{A}^w_g}\left(u_n\big|_{\mathbb{N}-\mathfrak{J}_0}\right)\leq 1\text{ and }\tau_{\mathcal{A}^w_g}\left(u_n\big|_{\mathbb{N}-\mathfrak{J}_0}\right)\leq \frac{\delta_1}{4}<\delta$ 4 and $\tau_{\alpha^w}\left\{u_n\big|_{\mathbb{N}\in\mathbb{N}}\right\}\leq\frac{\sigma_1}{4}<\delta_1$, so from (1), we have

$$
\left|\tau_{\mathcal{A}_{g}^{w}}\left(u_{n}\big|_{\mathbb{N}-\mathfrak{J}_{0}}+u\big|_{\mathbb{N}-\mathfrak{J}_{0}}\right)-\tau_{\mathcal{A}_{g}^{w}}\left(u_{n}\big|_{\mathbb{N}-\mathfrak{J}_{0}}\right)\right|<\frac{\delta}{4}
$$

which shows that

$$
\left|\tau_{\Delta_g^w}\left(u_n\big|_{N-3_0}+u\big|_{N-3_0}\right)>\tau_{\Delta_g^w}\left(u_n\big|_{N-3_0}\right)\right|-\frac{\delta}{4}.
$$
\n(6)

Now, from equations (4–6) and the linearity property of the operator Δ_{g}^w , we have

$$
\tau_{\Delta_g^w} \left(u_n + u \right) = \sum_{j=0}^w \left| u_n(j) + u(j) \right| + \sum_{i=0}^{30} \left(\frac{1}{h_i} \sum_{k \in \mathfrak{J}_i} k^{-s} \left| \Delta_g^w u_n(k) + \Delta_g^w u(k) \right| \right)^{p_i}
$$

+
$$
\sum_{i=3_0+1}^{\infty} \left(\frac{1}{h_i} \sum_{k \in \mathfrak{J}_i} k^{-s} \left| \Delta_g^w u_n(k) + \Delta_g^w u(k) \right| \right)^{p_i}
$$

$$
> \sum_{i=0}^{3_0} \left(\frac{1}{h_i} \sum_{k \in \mathfrak{J}_i} k^{-s} \left| \Delta_g^w u_n(k) + \Delta_g^w u(k) \right| \right)^{p_i} + \tau_{\Delta_g^w} \left(u_n \big|_{\mathbb{N} - \mathfrak{J}_0} \right) - \frac{\delta}{4}
$$

$$
> \frac{3\delta}{4} + \left(1 - \frac{\delta}{4} \right) - \frac{\delta}{4} = 1 + \frac{\delta}{4}.
$$

Since, $\tau_{A_g^w} \in \delta_2^s$, so by Lemma 2.3(ii), there is a $\lambda > 0$ such that $||u_n - u|| \ge 1 + \lambda$, hence for $n \to \infty$ that

 $\liminf ||u_n + u|| \geq 1 + \lambda.$

Choosing different values of *m*, *s*, *g*, we have following deductions:

Deduction 2.8 Choosing $s = 0$ and $g = 1$, the space $\mathcal{L}_{s}^{g}(p, \Delta_{g}^{w})$ then reduced to what has been introduced in [11].

Deduction 2.9 Choosing $s = 0$, $w = 0$, $g = 1$ and $\theta = (2^r)$, the space $\mathcal{L}_s^{\theta}(p, \Delta_g^w)$ then reduced to what has been introduced in [22].

Deduction 2.10 Choosing $w = 0$ and $g = 0$, the space $\mathcal{L}_{s}^{g}(p, \Delta_{g}^{w})$ then reduced to what has been introduced in [16].

Deduction 2.11 Choosing $s = 0$, $w = 1$, $g = 0$, $p_r = p$ and $\theta = (2^r)$ for all $r \in \mathbb{N}$, the space $\mathcal{L}_s^{\theta}(p, \Delta_g^w)$ then reduced to what has been introduced in [21].

Acknowledgment

The authors are grateful to the reviewers for their meticulous reading and suggestions which improved the presentation of the paper.

Funding

The authors extend their appreciation to the Deanship of Scientific Research at Saudi Electronic University for funding this research (8367).

References

- [1] S. Banach and S. Saks, Sur la convergence forte dans les champs *Lp*, Studia Math. 2 (1930), 51–57.
- [2] J.A. Clarkson, Uniformly convex spaces, Trans Amer Math Soc. 40 (1936), 396–414.
- [3] Y. Cui, H. Hudzik H N. Petrot , S. Suantai and A. Szymaszkiewicz, Basic topological and geometric properties of Cesàro-orlicz spaces, Proc Indian Acad Sci. (Math Sci.), 115(4) (2005), 461–476.
- [4] M. Et, Generalized Cesàro difference sequence spaces of non-absolute type involving lacunary sequences. Appl Math Comput. 219(17) (2013), 9372–9376.
- [5] M. Et and R. Çolak, On some generalized difference sequence spaces, Soochow J. Math. 21 (1995), 377–386.
- [6] M. Et and A. Esi, On Köthe Toeplitz duals of generalized difference sequence spaces, Bull. Malaysian Math. Sc. Soc. (2)23 (2000), 25–32.
- [7] D. Fathima and A. H. Ganie, On some new scenario of Δ-spaces, J. Nonlinear Sci. Appl. 14 (2021), 163–167.
- [8] C. Franchetti, Duality mapping and homeomorphisms in banach theory, in proceedings of researchworkshop on banach spaces theory. University of Lowa. 1981.
- [9] A. R. Freedman, J. J. Sember and M. Raphael Some cesaro-type summability spaces. Proc Lond Math Soc. 37(3) (1978), 508–520.
- [10] V. Karakaya, Some geometric properties of sequence spaces involving lacunary sequence. J Inequal Appl. Article ID 081028 (2007), 1–8.
- [11] M. Karakas, M. Et, and V. Karakaya, Some geometric properties of a new difference sequence space involving lacunary sequences. Acta Math Sci Ser. B Engl Ed. 33(6) (2013), 1711–1720.
- [12] H. Kizmaz, On certain sequence spaces. Canad Math Bull. 24(1) (1981), 169–176.
- [13] M. Mursaleen, R. Cólak and M. Et, some geometric lnequalities in a new banach sequence space. J Inequal Appl. Article ID 86757 (2007), 1–6.
- [14] M. Mursaleen, A. H. Ganie, N. A. Sheikh, New type of generalized difference sequence space of non-absolute type and some matrix transformations, Filomat. 28 (2014), 1381–1392.
- [15] Z. Opial, Weak convergence of the sequence of the successive approximations for non expansive mappings.Bull AmerMath Soc. 73 (1967) 591–597.
- [16] M. Ozturk and M. Basarir, On k-NUC property in some sequence spaces involving lacunary sequence. Thai J. Math. 5(1) (2007), 127–136.
- [17] N. Petrot and S. Suantai, Some geometric properties in orlicz-ces'aro spaces. Sci Asia. 31 (2005), 173–177.
- [18] B. Pierre, Probability theory and stochastic processes, Springer Nature Switzerlang, April, 2020.
- [19] S. Prus, Banach spaces with uniform opial property. Nonlinear Anal Theory Appl. 18(8) (1992), 697–704.
- [20] S. Rolewicz, On-uniform convexity and drop property. Studia Math. 87(2) (1987), 181–191.
- [21] J. S. Shiue, Cesàro sequence spaces. Tamkang J. Math. 1 (1970), 143–150.
- [22] S. Suantai, On some convexity properties of generalized cesaro sequence space. Georgian Math J. 10 (2003), 193–200.
- [23] B. C. Tripathy, A. Esi, A new type of difference sequence spaces, Int. J. Sci. Technol. 1 (2006), 11–14.