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Abstract
The purpose of this paper is to construct a polynomial of different degree with some conditions in the 
interval I = [ 1,1]−  by using Hermite - Fejer interpolation polynomial (HFI) of degree at most (4 1)n −  
that agree with f C� �[ 1,1] and has zero derivative at each nodes. Also, we investigate all extensions 
of (HFI) on ( 1,1)−  which are divergent everywhere.
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1. Introduction

Let us begin with the following triangular matrix of numbers

M x nkn k
n= =1,2,3,=1� � … (1)

Such that

� � � � � � �1 11 2 3x x x xn n n kn… (2)

By C I( )  we denote the set of all functions f x( )  that are continuous on I = [ 1,1]− . We further denote 
by H f M x H f M H M xn n n( , , ) ( , ) ( , )≡ ≡  polynomial of degree � �4 1n  uniquely determined from the fol-
lowing conditions.
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H f M x f x H f M x k rn kn kn n
r

kn( ) ( ) ( )( ), , = ; , , = 0, =1,2, , =1,2,3.… (3)

By adding the points ∓1 to M, we can construct another interpolation processes H f M xIn( ), , ,  
I =1,2,…,256. if we add the points ∓1 to M. These are quite naturally called the extensions of the step 
parabol as of higher. The processes { }H f M xn n( , , ) =1

∞  is called Hermite – Fejere interpolation process (HFI). 

The interpolation polynomial can be written in the form H x f x w x
w x

x x I xn k

n
kn

n kn

n kn
kn kn( ) ( ) ( )

( )
( ) ( )= 1

=1
2� �

��
�

�
�

�
�

�

�
�  

where the fundamental polynomial I xk ( )  of Lagrange and the polynomial w xn( ) are defined by

w x x x I x w x
w x x xn

k

n

kn kn
n

n kn kn
( ) ( ) ( )= = ( )

( )( )=1
� �

�
and

A generalization of Lagrange interpolation is provided by Hermite - Fejer interpolation polynomial 
that given a non-negative integer k and node X defined by 1 and 2, the polynomial
H f X x H X xIn In( ) ( ), , = ,  of f is the unique polynomial of degree at most (I + 1)n – 1, which satisfies 

the ( 1)I n+  conditions. H f X x f x k nIn kn kn( ) ( ), , = ,0 1� � �

H f X x r I k nIn
r

kn
( ) ( ), , = 0,1 ,0 1� � � � �  L. Fejer [1] showed that if one takes the n-th row of the 

matrix M T= , as zeros of T chebychev polynomial of first kind

T x cos k
n

k n nk= = 2 1
2

. =1,2, , , =1,2,{ } ��
�
�

�
�
�

� … … (4)

Berman studied the process { }H M xn( , )  for the case of nodes

x x cos k
n

k n n xk n0 1=1, = 2 1
2

, =1,2, , , =1,2, , = 1�
��� … … (5)

Obtained by adding the nodes ∓1 to the system in 4. In [2] it is shown that this process con-
structed for afunction f x x( ) | |=  diverges at x = 0 , while [3] it was shown that process constructed 
for f x x( ) = 2 diverges everywhere in I = ( 1,1)− . Cook and Mils [4] in 1975, who showed that if 
( )x x H T fn= (1 ) , ( , ,0)2 3

3 1− then ∓  divrges.
The result in [4] extended by my paper [5] that showed H T f xn3 1( , , )∓  diverges at each points in 

( 1,1)−  . Byrne and Smith [6] investigate Berman’s phenomenon in the set of (0,1,2) . In the last my 
paper [7], it showed that HFI interpolation polynomial of chebychev of the first kind converges for 
f x x( ) = 2 in ( 1,1)− , while diverges for f x x( ) =  for all x ≠ 0 in ( 1,1)−  where n is an even integer number 
at the node of degree 4 1n + . In [8] Berman considers special case of the processes { }H f M xn( , , ) , when 
{ }xkn k

n
=1 are the roots of polynomials

P x
n

sin
x cos

P cos k
n

k n

n( )
sin

=

1
2

2

, =

= 2
2 1

, =1,2, , ,

��
�
�

�
�
�

�

�

�
�

�

and

… nn =1,2,…

(6)

The polynomial P xn( )  are the Jacobi polynomials P xn
( )� �, ( ) with parameters � �= 1

2
, = 1

2
� . The fol-

lowing theorem is due to L. Fejer [1].

Theorem 1.1: If ∈C I( ) , then n nH f T f�� �
�lim ( ), = 0  where �

�
 denotes the uniform norm on C I( ) .
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The first uniform error estimate for the rate convergence of (HFI) was proved by Popoviciu [9]. His 
estimate was framed in terms of modulus of continuity of f defined by

w f sup f x f y x y I x y( ) { ( ) ( ) }, = : , ,� � �� � �

Normally he proved the following theorem

Theorem 1.2 (Popviciu): If f x C I( ) ( )∈ , then for n H f T f w f
nn=1,2,3, , 2 , 1… ( ) � � �

�
�

�

�
��
 Above result 

was subsequently improved by Moldovan [10] and by Shisha and Mond [11].
Let us dente by H f M x H M x H f Mn kn n kn n( , , ) ( , ) ( , )≡ ≡ , the interpolation polynomial of degree 4 1n −

, sometimes called Hermite - Fejer interpolation polynomial of higher order uniquely determined from 
the following set of conditions as in [3].

In this paper consider special case of the processes { }H f X xn k( , , )  for the case when the points { }xk  
are the roots of the Legendre polynomial P xn( ) . In this case

x cos k
n

k n nk =
2
2 1

, =1,2, , , =1.2,�
�

… … (7)

We want to study the process H f M xn( , , )  that are divergent in ( 1,1)−  for the case of nodes

x x cos k
n

x k n nk n0 1=1, = 2
2 1

, = 1, =1,2, , , =1,2,�
�

�� … …

Obtained by extending the nodes of matrix 7 by adding ∓1.

2. The Main Result

Theorem 2.1: The following Hermite – fejer interpolation polynomials (HFI) are divergent in (–1,1).

 1. H f P xk1 , ,( ) of degree at most 4 2n +  by th (4 3)n +  condition.

H f P f H f P rr
1 1, ,1 = 1 , , ,1 = 0, =1,2( ) ( ) ( )( )

 2. H f P xk2( , , ) of degree at most 4 3n +  by 4 4n +  conditions.

H f P f H f P rr
2 2, , 1 = 1 , , ,1 = 0, =1,2( ) ( ) ( ) .( )∓ ∓

 3. H f P xk3( , , ) of degree at most 4n + 3 by the 4n + 4 conditions.

H f P f H f P rr
3 3, ,1 = 1 , , ,1 = 0, =1,2,3( ) ( ) ( )( )

 4. H f P xk4 , ,( ) of degree at most 4 5n +  by the 4 6n +  conditions.

H f P f H f P rr
4 4, , 1 = 1 , , , 1 = 0, =1,2.( ) ( ) ( )( )∓ ∓ ∓

 5. H f P xk5( , , ) of degree at most 4 7n +  by the 4 8n +  conditions.

H f P f H f P rr
5 5, , 1 = 1 , , , 1 = 0, =1,2,3( ) ( ) ( )( )∓ ∓ ∓

The theorem will be proved via a sequence of lemmas in the next section.

3. Technical Preliminaries

We shall quite frequently make use of the following lammas before proof the main theorem.
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Lemma 3.1: From the differential equation satisfied by P xn( ) , we obtain the following values:

� � � � �

�� � � � �

�P n n P

P n n n n

n
n

n

n

( ) ( ) ( )

( ) ( ) ( )

1 = 1
2

1 = 1 ( 1)

1 = 1
8

1 1 ( 2) =

1

11 ( 1)

1 = 1
48

( 1)( 2) 1 ( 2)( 3) = 1 1

)

( ) ( ) )

n
n

n
n

P

P n n n n n n

�� �

��� � � � � � � �� ��� �

� � � � � � �

P

P n n n n n n n n

n

n
iv

( 1)

1 = 1
384

( 1)( 2)( 3) 1 ( 2)( 3)( 4( )( ) ( ) )) = 1 ( 1)

( )] = 2 1 , ( )] = 1

( )

4
= 1

4
= 1

� �

� � �� �

)

( ) (

n
n
iv

n x n x

P

P x n n P x n n
∓ ∓∓

))

( ) (

2
(7 7 2)

( )] = 3 1
4

11 22 33 26 4

2

4
= 1

4 3 2

n n

P x n n n n n nn x

� �

��� �
� � � �∓

∓ 881)

Lemma 3.2: The following estimates hold [12].

( ) ( ) ( )

( ) ( )

( )

1 2 , 1

1 8

1

2
1
4 .

1
2

2
3
4

1
2

2
1
2

� � �

� � �

� �

�
x P x n P x

x P x n

x

n n

n

�

�

PP x n

x P x P x

n x
n

n n

( )

( ) ( )

�

� � �

�

�

�
��

�

�
�
�

� �

1 ( ) 2

> 3, [ 1,1]

2

We often make use of a simple property of uniform convergent (u.c) operators [10] which states that if 
u f xn( , ) is a linear polynomial operator, then f u.c. on I, we have uniformly for x I∈

u f x
n

on
k

k

( ) ( , ) = (1)2 (8)

Where u f xn
k( ) ( , ) is the n-th derivative of u f xn( , )

4. Proof of the main result (Theorem)

Our method of proof constitutes expressing the polynomial H f M xi ( , , )  in terms of the well- known 
Hermite – Fejer interpolation polynomial H f M xn( , , )  and the reminder (error) function, say

E f M x H f M x H f M xi i n, , = , , ( , , )� � � � � (9)

Thus for H f M xi ( , , )  to converge to f, the error function E f M xi ( , , )  must tends to zero as n approaches 
to infinity. It is worth – mention that the uniformly convergent extension H f M xI ( , , ) was study by 
Sharma and Tzimbalario [13]. This will form the basis of the proof of our theorem. H f M xi ( , , )  of 
degree at most 4 1n +  by the 4 2n +  conditions such that :

H f P f H f M x ri i
r

k( ) ( ) ( ), , 1 = 1 , , = 0, =1,2,3( )∓ ∓ and (10)

As indicated earlier, we shall take H f P xi ( , , )  as our starting points

 1. Consider, now the extension H f P x1( , , ) and comparing the two, we find that

E f M x H f M x H f M x x a x b P xi i n n( ) ( ) ( ), , = , , , , = (1 )( ) ( )1 1
4� � �
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Where a1 and b1 are constants independent of x to be determined from the following two conditions:

� � � �E F P x a x b x P xn x1 1 1
4

=1, , = 1 ] ,( ) ( )( ) ( )

since

(1 ) ( )] = 1; 1 ] = 4 ( 1)4
=1

4
=1� � � � �� � �x P x x P x n nn x n x( ) ( )

and

( ) ( )1 ] = 3
4
( 1)(7 7 2),4

=1
2� ��� � � � �x P x n n n nn x

then

a n n H f P H f P1 1 1= 4 1 , ,1 1
2

, ,1� � � � ��( ) ( ) ( )

and

b n n H f P H f P1 1 1= 1
2
2 2 2 1 , ,1 1

2
( , ,1)( ( )) ( )� � � � ��

From Lemmas 3.1, 3.2 and 8, we have E f P x1 , ,( )  dose not tends to zero, which implies the divergent 
of H f P x1 , ,( ) on ( 1,1)− .

 2. The error function is given by

E f P x H f P x H f P a x b x P xi n2 2 2 2
2 4, , = , , , , 1 = ( )(1 ) ( )( ) ( ) ( )� � �∓ (11)

� � � �E f P x a x b x P xn x2 2 2
2 4

=1, , = ( )(1 ) ( )]( )

We apply the additional condition to obtain the following equations:

� � � � � � � � �H f P a b H f P a bi i, ,1 = 2 1
2

, ,1 =2 2 2 2) ( ) ( ) (12)

� �� � � � �H f P a N b Ni ( ) [ ], ,1 = 6 [ 2]2 2 (13)

Solving Equations 12 and 13, we get

a H f P H f P N N n ni i2 =
1
4

, ,1 1
8

, ,1 2 , = 2 ( 1)�� � � � � �( ) ( )( ) where

The divergent of H f P x2 , ,( ) is evident from equation 11, Lemma 3.2 and 8, that is

E f P x2 , , 0 ( 1,1)( ) � �in

 3. E f P x x a x b P xn3
2

3 3
4, , = (1 ) ( ) ( )( ) � �

� � � � � � �H f P x H f P x a x b x P x a x P xi n n( ) ( ) ( )[( ) ( )], , , , = 1 (1 ) (3 3 3
2 4

3
2 4 ))

, , , , = (1 ) 2 [(13 3 3
2 4

3�� � �� � � �� � �H f P x H f P x a x b x P x ai n( ) ( ) ( )[ ( )] xx P x
H f P x H f P x a x b x P x

n

i n

) ( )]
, , , , = (1 )

2 4

3 3 3
2 4

�

��� � ��� � �( ) ( ) ( )[ ( ))]��� � � ��3 [(1 ) ( )]3
2 4a x P xn

Since ( ) ( )1 ] = 22 4
=1� ��x P xn x  and (1 ) ( )] =12 ( 1)2 4

=1� ��� �x P x n nn x  and by apply
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The additional conditions to obtain the following:

a n n H f P H f Pi i3 = 2 1 , ,1 1
3

, ,1( ) ( ) ( )� �� � ���

and

b n n H f P H f Pi i3 =
1
2
2 1 1 , ,1 1

3
, ,1� � � �� � ���[ ( ) ] ( ) ( )

as n E f P x�� �, ( , , ) 03  Hence, by using Lemma 3.1 and Equation 8 H f P x3 , ,( ) Divergent
 4. E f P x x a x b P xn4

2
4 4

4, , = (1 ) ( ) ( )( ) � �

�� �� � ��

� �

E f P x H f P x H f P x
x P x a x b

i

n

4 4
2 2 4

4 4

, , = , , ( , , )
= 1

( ) ( )
[( ) ( )][ ��� � � � � � � � � �� �] 2[(1 ) ( )] ( ) [(1 ) ( )] [ ]2 2 4

4 4
2 2 4

4 4x P x a x b x P x a x bn n

�� �� � � �� � � �H f P a b H f P a bi i( ) ( ) ( ) ( ), ,1 = 8 , , 1 = 84 4 4 4and

a H f P H f P

b H f P H f

i i

i i

4

4

= 1
16

, ,1 , , 1

= 1
16
[ , ,1 ( ,

� �� � �� �

� �� � ��

( ) ( )

( ) PP , 1)]�

�

�
��

�
�
�

(14)

From Equations 11 and 14, by using Lamma 3.1 and Equation 8 the error function E f P x4 ( , , )  dose 
not tend to zero.

 5. E f P x x x a x b x c d P xn5
2 2 3

5
2
5 5 5

4, , = (1 ) [ 1 1 1 ] ( )( ) ( ) ( ) ( )� � � � � � �
By apply the additional conditions of H f P x5( , , ), we have the following equations

� �� �

� ��� � � � �

� ���

H f P d
H f P c n n d
H

i

i

i

( )
( ) [ ( )]
, , 1 = 8
, ,1 = 24 24 48 1

5

5 5

(( ) [ ( )] [ ( ) ]f P n n a n n c n n, , 1 = 480 384 1 6 16 1 12 6[8 ( 1) 4]5 5� � � � � � � � � � dd5

From the above system of equations, it is d H f P s ni5 =
1
8

, ,1 0� �� � ��( ) a , that is, the error function 

dose not tends to zero as n approaches to infinity. Hence H f P x5( , , )  is divergent.
It would be sometimes helpful to discuss uniform convergence of certain extensions by actual con-

struction also. For instance H f M x6( , , ) of degree almost 4 3n +  by the following conditions

H f M f H f M rr
6 6, , 1 = 1 ; , , 1 = 0, =1( ) ( ) ( )( )∓ ∓ ∓

Is seen to have the following form

H f M x f x f x f A x An
k

n

k k6 0 1
=1

1 2, , = 1 1 [1( ) ( ) ( ) ( ) ( ) ( ) ( ) (� � � �� � � � ��
�� xx

A x A x A x x I

k

k k k
k

k

�

� � � � � �
�
�

�

�

� � �
�

)

( ) ( ) ( ) ( )
( )

2

1 2
2

3
3

2 2

2 2
4[1 ] 1

1
(( )x

�

�
�

�

�
�

Where

A A n n A n
k

k

k
1 2

2

2 2

2

2 3

2

2

2
= 0 =

2(1 )
2( 1)
3(1 )

, = 4
3(1 )

2(, �
� �

�
��

�
� �
� �

�
� nn

k

�
�

2)
(1 )

,2�
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and

� �0 1

2
4 2= = 1

2
[1 (2 2 1)(1 )]n nx x P x n n x� �

��

�
�

�

�
� � � � �( ) ( )

I x k nk ( ), =1,2, ,…  is the fundamental Lagrange interpolation polynomial built on the node system M.

5. Conclusion

In this paper investigate all extensions of Hermite – fejer interpolation polynomials (HFI) on ( 1,1)−  
which are divergent everywhere. On considering special case of the processes { }H f X xn k( , , )  when the 
points { }xk  are the roots of the Legendre polynomial w. Obtained by extending the nodes of matrix (7) 
by adding ∓1.
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