
Results in Nonlinear Analysis 6 (2023) No. 2, 130–139 
https://doi.org/10.31838/rna/2023.06.02.013 
Available online at www.nonlinear-analysis.com

Received April 16, 2023; Accepted May 11, 2023; Online June 17, 2023

Demonstration for Fermat’s last theorem and  
Beal’s conjecture
José William Porras Ferreira

Centro de Investigaciones Científicas, Escuela Naval de Cadetes “Almirante Padilla”, Isla Manzanillo, Cartagena de Indias, Colombia

Abstract
Fermat’s Last Theorem (FLT), 1637, states that if n is an integer greater than 2, then it is impossible 
to find three positive integer numbers x, y and z in x y zn n n� �  where such equality is met being ( ,� )x y  
coprime. Beal’s Conjecture (BC), 1993, states that in equation A B Cx y z� � , where ( , , , , , )�A B C x y z � �
and ( , , )� � �x y z >2  are different exponents, then ( , , )�A B C  must have a prime factor, for positive integer 
solutions, but if are coprime and the exponents ( , , )� � �x y z >2  are different, there are no positive integer 
solutions. The present proof contains two theorems that finally allow us to demonstrate the Beal 
 Conjecture, transforming the equation of Beal conjecture into the form of Fermat’s Last Theorem 
equation. Since there are no solutions in positive integer numbers for Fermat’s Last Theorem equa-
tion, then the Beal’s Conjecture does not have solution in positive integer numbers for unequal expo-
nents or with two equal exponents, but all greater than two, being two of their bases coprime.
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1. Introduction

1.1 Fermat’s last theorem

Fermat’s last theorem (FLT) or Fermat-Wile’s theorem (1995) was one of the theorems where great 
mathematicians tried to solve it during the last three centuries [1–3].
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Using modern notation, Fermat’s last theorem can be stated as follows:
If n is an integer number greater than 2, then it can’t be found three integer numbers: x, y and z 

being ( ,� )x y > 0 coprime and x y≠  in the equation:

x y zn n n� �

Some of the mathematicians who managed to find partial solutions were: Pierre de Fermat (1667) [4], 
for n = 4, other alternative tests for n = 4 were made later [5]; although Fermat actually showed that 
given two integers (x, y), it is impossible for z x yk k k4 4 4� �  for k ≥1, to have integer solutions in z, that 
is, ( ,� ,� )z x yk k k2 2 2 , do not belong to a primitive Pythagorean triple where z x yk k k4 4 4� � , Leonard Euler 
(1735) for n = 3, [6–8]. Sophie Germaine, [9], Fermat’s Last Theorem can be divided into two cases. 
Case 1 involves all powers p that do not divide any of x, y, or z. Case 2 includes all p that divide at least 
one of x, y, or z. Germaine proposed the following, commonly called “Sophie Germaine’s theorem”.

Let p be an odd prime. If there exists an auxiliary prime P = 2Np + 1 (N is any positive integer not 
divisible by 3) such that:
 1. If x y zp p p� � � � � � �� � � 0  (mod p), then p divides xyz, and
 2. p is not a p-th power residue (mod p).
Then the first case of Fermat’s Last Theorem holds true for p.

Germain used this result to prove the first case of Fermat’s Last Theorem for all odd primes p� � �< 100  
and Legendre extended it to p <197 . Dirichlet and Legendre, (1823–1825), [10–11], went from n = 3 
to n = 5. Lame (1840), [12–14], did so for n = 7. Likewise the test has been extended to exponents 
n = [ ,� ,� ]6 10 14 .

Andrew Wiles (1995), [15–18], finally managed to solve it using modern mathematics that did not 
exist in Fermat’s time.

Wiles could prove Fermat’s last theorem from the connection, outlined by Frey, and demonstrated 
by Ken Ribet in 1985 [19–20], that a demonstration of the so-called Taniyama-Shimura conjecture 
[21–22], would directly lead to a demonstration of Fermat’s last theorem. In short, the Taniyama-
Shimura conjecture states that every elliptic curve may be uniquely associated with a mathematical 
object called a modular. If the FLT is false, then there would be an elliptic curve such that cannot be 
associated with any modular form, and therefore the Taniyama-Shimura conjecture would be false. 
i.e., Taniyama-Shimura conjecture solution would demonstrate the FLT.

Wiles spent 8 years following the demonstration of Ribet in complete isolation working on the 
problem and only relying on his wife, which is a way of working unusual in mathematics, where it 
is common to mathematicians from around the world to share their ideas often. Wiles studied and 
expanded this approach in his proof and in January 1993 asked his Princeton colleague, Nick Katz, to 
help this reasoning. For Wiles at this time, his developments and reasoning fit right, but he wanted 
someone else to check it out. His conclusion at that time was that the techniques used by Wiles 
seemed to work properly, but had subtle errors that Wiles finally corrected and successfully completed 
its demonstration in 1995 [23–27].

Because Wiles used more than 100 pages and modern mathematical techniques, is in practice 
impossible that this demonstration is the same one that hinted at Fermat. (Fermat had a copy of the 
“Arithmetical of Diophantus’ on whose banks scoring reflections that were emerging him. In one of 
these margins it enunciated the theorem and wrote in Latin: “Cuius rei demonstrationem mirabilem 
sane detexi. Hanc marginis exiguitas non caperet”, whose translation is: “I have a truly marvelous 
demonstration for this fact, but this margin is too narrow to contain it”, [1]. Although Fermat in 1667, 
proved the case n = 4, using the method of infinite descent; it is likely that him had deceived to believe 
that he had a proof for the general case. It can be even that will have noticed his error further: their 
marginal notes were for personal use, and therefore Fermat would have not had to backtrack with his 
comments.

On October 7, 2013 I was invited to Paris by WASET (World Academy of Science Engineering and 
Technology) to give a lecture on the demonstration of the last theorem of Fermat, using mathematical 
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tools that existed in the 17TH century. This solution also was presented at the invitation of the 
Department of Physics of the “Universidad del Valle Cali”, Colombia on December 4, 2014, and it was 
published in the scientific magazine of the Military School of Cadets Colombia (2016) [28].

Here I present a different and novel proof considering that zn  is an integer of the form ( )y l n+ , 
finding that z y l x yn n n n� � � �( )  being all integers, (x, y) coprime and x y≠ , thus proving Fermat’s 
last theorem.

1.2 Beal’s Conjecture

Andy Beal, (1993) [29–33] stated that A B Cx y z� �  (note that x, y and z are unique exponents) where 
( ,� ,� ,� ,� ,� )A B C x y z � �  and ( ,� ,� )x y z > 2  are different exponents would have no solution using ( ,� ,� )A B C  
coprime bases. While working on Fermat’s Last Theorem, Andy Beal studied equations with inde-
pendent exponents. He worked on several algorithms to generate solution sets, but the nature of the 
algorithms he developed required a common factor in the bases. He suspected that using coprime 
bases might be impossible and set out to test his hypothesis. With the help of computers and a col-
league, Andy Beal tested this for all variable values up to 99. Many solutions were found, and all had 
a common factor in the bases, but not with coprime bases.

During the period after the discovery by Andy Beal in 1993, he tried to check if there was something 
similar already, writing to scientific journals and teachers in number theory. One of them Dr. Harold 
Edwards, from the Department of Mathematics at New York University, who is well-known for being 
the author of “Fermat’s Last Theorem, a genetic Introduction to Algebraic Numerical Theory”, [34] 
sent the paper to Dr. Earl Taft, also a mathematician at Rutgers University who received it and sent 
it to his colleague Jarell Tunnell, an expert on the Fermat’s last theorem. All of them confirmed that 
there was no known antecedent of this fact being unknown before 1993, when Beal discovered and 
postulated that there could be a possibly finite number of solutions between integers.1

The solution to the Beal conjecture necessarily requires in its bases three integers coprime, all of 
which must have same integer exponents, and greater than 2, that is to say if there were different 
exponents in their bases, can’t be considered as a counter example to Beal’s conjecture, as this example:

271 2 3 73 919
3 29 89 7 11 167 2 5 353

3 3 5 3 3

4 3 3 3 3 3 7 4 3

� �

� �

Here also is confirmed that Beal’s Conjecture (BC) not only met with prime common bases, but also 
with composite common bases if one of the exponents is less than three and after eliminating the 
common bases can have solutions in +  and finally, when the common bases from BC are eliminates, 
that is, if all the exponents are different or two exponents are equal but all exponents are greater than 
two, shows that there are not solutions in + .

The proof of this conjecture is based on Fermat’s Last Theorem demonstrated in this manuscript, 
exponent algebraic properties and reduction ad absurdum.

2. Lemma [1]

Let x, y natural numbers, a, b and c be positive real numbers, which satisfy the equations:

x y a
x y b
x y cn n n

� �
� �
� �

�

�
�

�
�

2 2 2

�

Then it is true that a b c> >  for n� � , n > 2 .

1 Summarize from: http://bealconjecture.com/
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Demonstration:
Let’s try initially to prove that a b> .

Indeed:

a a a
a x y x y
a x y xy
a x y
a b

2

2

2 2 2

2 2 2

2 2

2

� �

� � �

� � �

� �

�

( )( )

Consequently, a b> .
On the other hand:

b b b

b x y x y

b x x y y x y

b

n n

n
n

n
n n

�

� � �� �
� �� � � �� �

�

�

� �

2 2

2 2 2 2
2

2 2 2
2

2 2 2
2

( )

nn n n

n n n

n n

x x y y
b x y
b c

� �

� �

�

� �2 2 2 2

Then, b c> , which completes the demonstration that a b c> > .

3. Theorems

3.1 Theorem 1: Solution of Fermat’s Last Theorem

The equation z x yn n n� �  for n > 2 , has no solutions in positive integers ( )+ .

Demonstration:
It will be proved that there are no solutions in +  in the equation z x yn n n� �  being ( ,� )x y =1 (coprime), 
so initially it will be assumed that there is an integer solution.
 1. In fact, assume they are ( ,� ,� )x y z  coprime + , which satisfy the equation:

z x yn n n� �

For some n� � , n > 2 .
It can’t be x y= , because z xn� �2  .

 2. Since ( ,� )x y =1, then U x y2 2 2� � , can have +  by Pythagorean Theorem. When U is an integer the 
triplet ( ,� ,� )U x y , it is known as a primitive Pythagorean triplet. There are no two different primitive 
Pythagorean triples where their triangles are similar since ( ,� )x y =1; Likewise, when U is irratio-
nal, there cannot be a minor primitive Pythagorean triplet similar to the triangle ( ,� ,� )U x y , since 
( ,� )x y =1.

 3. By Lemma [1], we have that U z> , from which we can say that there exists 1 2� � �k   where:

k U
Z

x y

x yn nn

2
2

2

2 2

2� �
�

�� � .
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 4. In accordance with the above, it can be stated that k2  can not be a positive integer. In effect, since 
k >1, it has the following:

���� ,ky kz<

Then k y U2 2 2< ,
Therefore � ,k y y y2 2 2 2� �

So ( ) .k y2 22 0� �

It follows that 1 22
2

2� � �k U
Z

. So things, 1 22< <k  is rational () or irrational (𝕀) number.

 5. On the other hand, we have:

z U
k
x y
k

x y

2
2

2

2 2

2

1
2

1
2

�

�
�

� �

�

Where:

x x
k

y y
k

1
2

2

2

1
2

2

2

=

=

By Pythagoras ( ,� ,� )z x y1 1  form a right triangle.
In this way, the right triangles OAB and OCD of Figure 1 are constructed, which would be similar 
triangles since:

U
z

x
x

y
y

k= = =
1 1

Figure 1: Similar triangles OAB and OCD
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 6. We already know that k2 �is rational or irrational number.
Let k2 ∈  and given that x ≠ y, in the triangle OCD it has that U x y2 2 2� � , and in the triangle 
OAB:

z x y x y
k

2
1

2
1

2
2 2

2� � �
� (1)

The fact that ( ,� )x y =1, then ( ,� )x y2
1

2
1 � � , and z x y2

1
2

1
2� �  has not solution in +  and also 

z z z x yn n n n� � ��2 2  for n > 2  has not solution in + .

Additionally the solution of Z2 � �  with ( ,� )x y2
1

2
1 ∈ it originates an absurdity, since there would 

be the same value of Z W2 2=  with the value v x≠ ,being Z x yn n n� �  and W v yn n n� � , it turns out 
that Z Wn n=  which is absurd, since v x≠ :

As Z y>  and k2 ∈ , there must be a 1 22
2

2

2

2� �
�� �

�
�

�k U

x y

U
y qn nn ( )

, with q ≥1, so that Z � � :

Z U
k

x y
x y

x y

x y
x y
y q

y q x y
x

n nn

2
2

2

2 2

2 2

2

2 2

2 2

2

2
2 2

2� �
�
�

�� �
�

�
�
�

� �
�

( )

( )
��

�

�
��

�

�
�� � �

� � � �

y
y q

Z y q x yn n n n

2
2( )

( )

Since x y
x y

2 2

2 2 1�
�

�  with a value v ≠ x  and ( ,� )v y =1  it has v y
v y

2 2

2 2 1�
�

� . with W v yn n n� �  and 

1 2
2 2

2

2 2

2� �
�
�

�
�

�� �
K v y

y q
v y

v yn nn( )
<2, we also have that W v y

K
y q v y

v y
Z2

2 2

2
2

2 2

2 2
2�

�
� �

�
�

�( ) , which is absurd 

in W v y Z x yn n n n n n� � � � � , since v x≠ , then k U
Z

x y

x y
K v y

W
v y

v yn nn n nn

2
2

2

2 2

2
2

2 2

2

2 2

2� �
�

�� �
�

�
�

�

�� �

�

�

�
�
��

�

�

�
,� ��

��
��Q.

As k2 ∉Q� then �k2 ∈   and Z U
k

2
2

2=  ∈   (the integer over an irrational number is irrational), then 

Z x yn n n� �  has no solution in + , and what is assumed in point 1. that they are ( ,� ,� )x y z  coprime pos-
itive integers, which satisfy the equation z x yn n n� �  is false.

In this way Fermat’s last theorem is proved and maybe we have followed the same path of Fermat 
when he said: “Cuius rei demonstrationem mirabilem sane detexi. Hanc marginis exiguitas non 
caperet” and the fact that Fermat used the infinite descent in it demonstration for z x y4 4 4� �  has not 
integer solution. Also it can be concluded that in any right triangle, ( ,� ,� )U x y  with ( ,� )x y  coprime, any 
integer z U<  in its hypotenuse must be z x yn n n� �  for n > 2 .

Corollary 1
In equation z x yn n n� �  for n > 2 if x, y or z they are irrational in the form z a f d= ( )/  or x b h g= ( / )  or 
y c j i= ( / ) , with ( ,� ,� )a b c � � , and [( ,� ),�( ,� ),�( ,� )]d f g h i j � � , where ( ,� )d f =1, ( ,� )h g =1 and ( ,� )j i =1 , where 
( ,�� ,�� )f d h g j i> > >  and ( ,� ,� )d g i > 2  then the equation z x yn n n� �  for n > 2  has no solution in the inte-
ger numbers, since z U x y� � �2 2  and 1 22< <k , would be a similar case to what has been demon-
strated in Theorem 1, and if z∈  , by definition z� � .
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3.2 Theorem 2: Solution of Beal’s conjecture

Theorem
In Equation A B Cx y z� � , where ( , , , , , )A B C x y z� � � � � � �  and ( )x y z� � � 2  then ( , , )A B C� �  must have 
a prime factor pn  where p is a prime and n ≥1, to have integer solutions with the exponents ( ,� ,� )x y z  
greater than 2.

In other words: A p ax n r= , B p by n s=  and C p cz n t=
If pn  is eliminated and a b cr s t� �  with ( ,� )a b  coprime and the exponents ( , , )r s t  are different and 

greater than 2, there are no solutions in + .
Demonstration through Theorem 2 (FLT) and reduction ad absurdum

 1. In Equation A B Cx y z� � , where ( , , , , , )A B C x y z� � � � � � �  and ( )x y z� � � 2  then ( , , )A B C� �  must 
have a prime factor pn  where p is a prime and n ≥1, to have integer solutions with the exponents 
( ,� ,� )x y z  greater than 2.

In other words: A p ax n r= , B p by n s=  and C p cz n t=
If pn  is eliminated and a b cr s t� �  with ( ,� )a b =1 and the exponents ( , , )r s t  are different and 

greater than 2, there are no solutions in + .
 2. Let proof with a numerical example when a b cr s t� �  with ( , )a b� =1 and the exponents ( , , )r s t  are 

different and one of the exponents is less than 2, there are solutions in + .
The equation A B Cx y z� � , where Ax = 36 ; Bx =183 ; Cz = 38  has solution in + , but after elim-

inating the prime factorpn = 36 , the equation remains a b cr s t� � , whit ( , )a b =1, have one of the 
exponent is less than 2 and has solution in + . See Table 1.

Beal’s Conjecture also complies when the common factor is a composite number, if after the elim-
ination of the composite factor one of the exponents is less than three can have solution in + . For 
example, the Equation a b c2 4 3� �  has integer solutions and can be converted to Beal’s Conjecture, 
with generating numbers (a b c,� ,� ) [32] of the form2:

a m n m m n n
b mn m n
c m m n

� � � �

� �

� � �

( )( )
( )

3 4 9 408 16
6 3 4
9 168 1

4 4 8 4 4 8

4 4

8 4 4 66 8n

This form has infinite solutions in + , (see Table 2).
To clarify, Figure 2 shows how it is possible to go from Beal’s Conjecture A B Cx y z� �  to 

a b cr s t� �  equation or from a b cr s t� �  to A B Cx y z� �  with solutions in +  if one of the exponents 
( ,� ,� )r s t  is less than 3.

 3. As we already know that there exist integer solutions in A B Cx y z� �  with common factors and 
after eliminating them the resulting equation a b cr s t� �  with ( , , )a b c � �  and ( , )a b  coprime, has 
at least one of the exponents ( ,� ,� )r s t  less than 3, we must continue the demonstration assuming: 
integer solutions in the equation a b cr s t� �  with, ( , )a b  coprime and( )r s t� � � 2 .

2 Rafael Parra Machío. ECUACIONES DIOFÁNTICAS, pp 22. Web: http://hojamat.es/parra/diofánticas.pdf

Table 1: Example of a solution of the equation A B Cx y z� �  with ( )r s t� � � 2 , where after 
 eliminating the prime factor pn , the equation a b cr s t� �  has a solution in the integers  

but one of the exponents r s,�  or t  is less than 3.

Ax By Cy Prime Factor ar bs ct

36 183 38 pn = 36 1 23 32
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 4. For this part of the demonstration the method of reduction ad absurdum will be applied.
In fact assume they are ( , , )a b c � �  with ( , )a b  coprime, which satisfy the equation:

a b cr s t� �

For some ( )r s t� � � 2 , � � �( ,� ,� )r s t  .
 5. Assuming that r is the smaller exponent and greater than 2 then:

( ) ( )( ) ( ) ( )/ /a b c a b cr s t r s r r t r r� � � � � � exponent property

There are two cases to be analyzed for bs r/  and ct r/

Case 1: r |s  and r |t  or ( )b b r skr� �1   or ( )c c r tkr� �1  , ( ,� ,� )b c k1 1 � �
then:

b u c v u vs r t r/ /,��� � ( ,� )� � � � �

and

( ) ( )a b c a u v rr s t r r r� � � � � �� 2

Which leads to an absurd, since according to Theorem 2, this equation has no solution in the integer 
numbers.

Case 2: r ∤s  or r ∤t  and ( )� , ( ,� ,� )b b c c b c kkr kr� � � � �
1 1 1 1�  ; therefore bs r/  or ct r/  or both must not be ratio-

nal numbers.

Table 2: Some examples with ( ,� )m n= =1 1  and ( ,� )m n= =3 2 , where a k12  for k ≥1 can be a common 
factor of Ax , By  and Cz  with A a B a b C a cx k y k z k� � ��2 12 3 4 4 3,� ( ) ,� ( )  and then ( ,� ,� ,� ,� ,� )A B C x y z � � .

A14 B4 C3 Composite numbers a2 b4 c3

268114 ( · )2681 63 4 ( · )2681 1934 3 268112 26812 64 1933

14294626114 (
· )
142946261
6444

3

4

(
· )
142946261
280873

4

3

14294626112 1429462612 64444 2808733

Figure 2: How is it possible to go from BC to the a b cr s t� �  equation with solutions in � � { }0  or 
from a b cr s t� �  to BC with solutions in +  if one of the exponents ( ,� ,� )r s t  is less than 3.
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Proof:
Assuming u b d

e
s r= =/ �� or v c f

g
t r= =/  or both are fractional numbers ( ,� ,� ,� )d e f g � �  ⇒ ( ,� )d e =1 and 

( ,� )f g =1:

u d
e

br
r

s� �

�
�

�

�
�

�

�
�
�

�

�
�
�
�  or v f

g
cr

r
t�

�

�
�

�

�
�

�

�
�
�

�

�
�
�
� , then u or v or both can’t be fractional numbers. It is impossible 

that an integer be a fractional number; therefore: u bs r= /  or v ct r= /  or both must be irrational numbers.

For this case: If any u bs r= /  or v ct r= / , or both bases are irrational numbers, then the equation:
[( )] [ ( ) ] [ ]( )/ /a b c a b c a u vr s t r s r r t r r r r r� � � � � � � �  is not resolving in + . (Corollary 1 of 

Theorem 1).
The demonstration scheme is the same for any smaller exponents and it is not necessary to expand 

the demonstration for each of the others exponents ( ),�s t  if one of them is the smallest.

Corollary 1: The equation a b cr s t� � , has no solution in + , if all the exponents (r, s, t)> 2 and two 
of them are equal.

It is obvious that if there is no solution with exponents (r ≠ s ≠ t) > 2, neither is there if two of its 
exponents are equal, vastly follow the same procedure from point 4 of Theorem 3, i.e. if the exponents 
r s=  or r t=  or s t= , there are no solutions in integers.

In conclusion it is ad absurdum to consider in point 4. that the equation a b cr s t� � , ( ,� )a b =1 and 
( )r s t� � � 2  or two of the exponents are equal, can have solution in integer numbers, being demon-
strated in all its forms the Beal’s Conjecture.

4. Conclusion

A simple demo of FLT using 17TH-century mathematical tools such as stated by Fermat in the margin 
of the “Arithmetical of Diophantus’ writing his notes can exist. Taking into account that Fermat was 
who introduced the principle of infinite descent, which was used on his show for n k= 4  in the FLT, it 
wouldn’t be strange that Fermat did think that he had a general solution of his last theorem or used 
a similar procedure to the described here.

The theorem doesn’t have a major application, but to be considered the most difficult problem in 
the world, for 360 years, the search for its solution, allowed the advancement of mathematical science 
during the last four centuries and where great mathematicians such as Euler (1707–1783), Lagrange 
(1736–1813), Germaine (1776–1831), Gauss (1777–1855), Cauchy (1789–1857), Lamé (1795–1870), 
Dirichlet (1805–1859), Liouville (1809–1882), Kumer (1810–1893), Vaudiver (1882–1973), Taniyama 
(1927–1958), Shimura (1930-), Wiles (1953-) and many other mathematicians who contributed to the 
advancement of the sciences and number theory in search of their show.

Using the demonstration of Fermat’s Last Theorem as a base, mathematical transformations with 
exponent properties and reduction ad absurdum, it was possible to confirm Beal’s Conjecture, i.e. 
when Equation A B Cx y z� � , where ( ,� ,� ,� ,� ,� )A B C x y z � �  and ( ,� ,� )x y z > 2  has common bases, (prime 
or composite numbers) there are integer solutions if after eliminating the common bases, one of the 
exponents is less than three. If the resulting equation have all the exponents ( ,� ,� )r s t  greater than two 
(all different, or two exponents equal), with ( ,� )a b  coprime, confirms that the equation:
a b cr s t� �  and ( , , )r s t > 2 has not solutions in + , solving Beal’s conjecture.
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