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Abstract
The aim of this paper is to structure a new concept of Mixed Slicing Structure Property denoted by 
(MSSP via short) and we give proof that the mixed fibration is not mixed Hurewics fibration.
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1. Introduction

The fundamental distinction from modern conceptions of fiber spaces. Seifert believed to be now 
known as the base space (topological space) of a fiber (topological) space B was a quotient space of B 
and not a component of the structure. Hassler Whitney first described fiber space in 1935 [1] under 
the term sphere space. Later, he modified the name to sphere bundle [2]. Jean-Pierre Serre [3], and 
others are credited with the theory of fibered spaces, which includes fibered manifolds, principal 
bundles, vector bundles, and topological fibrations as special cases. A fiber structure (E, P, B) is a 
triple consisting of two topological spaces E, B, and P : E → B a continuous surjection. The total (or 
fibered) space refer to space E, P is termed the projection , and B is the base space for each b0 ∈ B 
the set F = P−1(b0) and F is called fiber over b0. The fiber structure over B refers to (E, P, B) [4]. A 
fibration is a continuous mapping satisfying the covering homotopy property, and its CW-complex is 
called Serre vibration. The slicing structure property (SSP) introduced by [5] if we have given map 
p: E → X has the SSP then E is called sliced fiber space over X relative to p and in particular, every 
bundle space is a sliced fiber space. In addition, the triple ξ = (E, p, X ) is called a Hu fiber space (for 

Email addresses: daheralbaydli@uowasit.edu.iq (Daher W. Freh Al Baydli); aqeel.noor@uowasit.edu.iq (Aqeel Jassim Noor)

Received September 22, 2023; Accepted October 8, 2023; Online November 17, 2023



Freh Al Baydli D.W. and Noor A.J., Results in Nonlinear Anal. 7 (2024), 1–6.  2

more details see [6]). We investigate that most of the theorems that are valid for fibration (Serre 
fibration) are also valid for Mixed fibration (Mixed Serre fibration). In particular, with Mixed Slicing 
Structure Property.

2. Preliminaries

In this section, we illustrate some basic definitions, properties, and results.

Definition 2.1. [7] Let S and T be topological spaces. If p and q are mapping of S into T, then p and q 
are homotopic (p ≃ q) iff there exists a mapping h : S × I1 → T such that h (e, 0) = p (e) and h (e, 1) = q 
(e) for all e ∈ S. The mapping h is called a homotopy between p and q.

Definition 2.2. [6, 8] Let p : E → B be a map (fiber bundles), we say that p has Covering Homotopy 
Property (C.H.P.by short) with respect to X iff given a map f : X → E and ht : X → B is homotopy such 
that p ◦ f = h0. Then there exist a homotopy ht* : X → E such that (1) h*0 = f. (2) p ◦ ht* = ht, for all x ∈ X 
and t ∈ I. I is the unit interval.

Definition 2.3. [9] Given a fiber space (fiber bundle) p : E → B, a section s is a continuous map  
s : B → E such that pos = identity : B → B.

Definition 2.4. [6] The map p is said to be (Hurewicz) Fibration if it has covering homotopy property 
with respect to all spaces X.

Definition 2.5. [6, 10] Let p : E → B be a continuous map of spaces, p has the covering homotopy 
property (C.H.P) with respect to all CW-complex spaces X is called Serre Fibration.

Definition 2.6. [11] (1) Let E1, E2, X be three topological spaces, let Ei = {E1, E2}, fi = {f1, f2} where f1 : 
E1 → X , f2 : E2 → X are two maps, and α : E2 → E1 such that f1 ◦ α = f2 then (Ei, fi, X, α) is a Mixed fibre 
space (M-fibre space).

If E1 = E2 = E, α = identity, f1 = f2 = f then (E, f, X ) is the usual fibre space.
(2) Let {Ei, fi, X, α} be a M-fiber space, let x0 ∈ X then f = {fi

−1(x0)l is the M-fibre over x0.

Definition 2.7. Given a Mixed fiber space (M-fibre space) (Ei, fi, X, α), a Mixed section si is a continu-
ous map si : X → Ei such that fiosi = identity : X → X.

Definition 2.8. Let {Ei, fi, X, α} be a M-fibre space, where i = 1, 2. X, B be a CW-complex spaces and  
ht : B → X be map. A continuous k1 : B → E1 and k2 : B → E2 such that f1 ◦ k1 = ht and f2 ◦ k2 = ht, where 
Ki = {k1, k2} is called a Mixed-covering (M-covering) of ht.

Definition 2.9. [1] Let Y be a CW-complex space, f1 : E1 → Y, f2 : E2 → Y, α : E2 → E1 are maps of a 
spaces such that f1 ◦ α = f2, let Ei = {E1, E2} where i = 1, 2. fi = {f1, f2} the quartic {Ei, fi, Y, α} has the 
Mixed covering homotopy property (M-CHP) with respect to a CW-complex X iff given a map k : X → 
E2 and a homotopy ht : X → Y such that f2 ◦ k = h0, then exists a homotopy gt : X → E1 such that

(1) f1 ◦ gt = ht. (2) α ◦ k = g0.
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Figure 1. Covering Homotopy Property
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(1) M-fiber space is called M-Serre fibration, is it has the (M-CHP) with respect to all CW-complex Y.
(2) M-fiber space is called Mixed-Hurewics fibration, if it has mixed covering homotopy property 

with respect to all spaces.
(3) M-fiber space is called Mixed-fibration, if it has mixed covering homotopy property with 

respect to classes of space.

3. Non-Trivial of Mixed Principal Bundle

In this section, we give examples for the projection map which is mixed fibration but not a mixed 
Hurewics fibration.

The projection pi : Ei → B, where i = 1, 2, gives a mixed trivial G-bundle over B, since Ei|Ui
 ≃ 

EiUi
 and Ei|Vi

 ≃ EiVi
 are mixed trivial G-bundles. To prove that pi is not a Mixed Hurewics fibra-

tion. suppose that B is contractible. Also, if pi : Ei → B were mixed fibration, the admit a section 
it would be necessary. In particular, let Ht : B → B be a null-homotopy of idB . Distinctly, we can 
lift the constant map H1 to Ei. suppose that pi is Mixed Hurewics fibration, the mixed covering 
homotopy property then we get a lift H*t : B → Ei, of H to Ei, and as a result a section H0* of pi. But 
we showed previously that pi admits no section. Therefore pi is not a mixed Hurewics fibration. 
Assume G = GL+1(ℝ) = (ℝ, +,.) be the topological abelian group which given by the positive reals 
with multiplication. Let the trivial G-bundles over Ui and Vi, given by EiUi

 = Ui × G and EiVi
 = Vi × 

G, respectively. The principal G-bundle E over B whose construct by gluing EiUi
 and EiVi

 along Ui 
∩ Vi by the G-isomorphism

 : | |f i i i i i i i iE U U Vi E V V Vϕ ∩ → ∩

 (1)

defined by

 φfi(xi, g) = (xi, fi(xi).g) (2)

More concretely, Ei is obtained from EiUi
 ⨿ EiVi

 by identifying (xi, g) ∈ EiUi
 with φfi(xi, g) ∈ EiVi

 for each 
x ∈ Ui ∩ Vi for xi > 0, the continuous function f : Ui ∩ Vi → ℝ+ which does not extend to a continuous 
function B → ℝ+. Where B be the space obtained by gluing to copies of ℝ along ℝ+

 B = (R × {0, 1})/ℤ2

This space is not Hausdorff, let q : R × {0, 1} → B be the equation map. Define two subset covering B 
by Ui = qi(R × {0}) and Vi = qi(R × {1}). The projection map pi : Ei → B gives a principal G-bundle over 
B, which comes with canonical isomorphism Ei|Ui ≃ EU and Ei|Vi

 ≃ EiVi
. We will now show p does not 

admit a section. Via the construction of E, section of pi : Ei → B determine:

(1) a section of EiUi
 = Ui × G → Ui, and therefore a map sUi

 : Ui → G = ℝ+; similarly, map sVi
 :  

Vi → G = ℝ+;
(2) these maps verify sVi

 = fi(xi).sUi
 (xi) for each xi ∈ Ui ∩ Vi.
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In particular, fi(xi) = sVi
 (xi)/sUi

 (xi) for all xi ∈ Ui ∩ Vi. Although, this implies that fi extends to a con-
tinuous function f̄i : Xi → ℝ+ given by

 f̄i = sVi
 (qi(g(xi), 1))/s(qi(g(xi), 0))

which contradicts the known non-extension property of fi.

4. Mixed Slicing Structure Property

The slicing structure property introduced by [5] if we given map p : E → X. Via a slicing structure for 
p, the collection S = {ω, ϕU } of the following entities:
slicing neighborhoods.

(1) A system ω = {U} of open sets of X which covers X, called the slicing neighborhoods.
(2) A system of maps {ϕU |U ∈ ω} indexed by the slicing neighborhoods, called the slicing func-

tions, where each ϕU, is defined on the subspace U × p−1(U), of the product space X × E, with 
images in E in such a way that the following two conditions are satisfied:

 (SF1)

 pϕU(a, e) = a,   where a ∈ U, e ∈ p−1(U).

 (SF2)

 ϕU (p(e), e) = e  (e ∈ p−1(U ))

If a slicing structure S = {ω, ϕU,} for p exists, we say that p : E → X, has the slicing structure property (SSP).

 BP ⇒ SSP ⇒ ParaC H P

If p : E → X has the SSP then E is called sliced fiber space over X. In addition the triple ξ = (E, p, X ) 
is called a Hu fibre space (for more details see [6]).

Definition 4.1. Let E1 ⊂ X1, E2 ⊂ X2 and p1, q1 : X1 → Y, p2, q2 : X2 → Y be continuous function. If H : X1 
× I → Y and G : X2 × I → Y are a continuous function such that H (x, 0) = p1(x1), H (x1, 1) = q1(x1) and 
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G(x2, 0) = p2(x2), G(x2, 1) = q2(x2) for all x1 ∈ X1, x2 ∈ X2, and H (e1, t) = p1(e1) = q1(e1), G(e2, t) = p2(e2) = 
q2(e2) for all e1 ∈ E1, e2 ∈ E2 and for all t ∈ I, then H ,G are called M-relative homotopy and pi is said to 
be homotopic to qi relative to Ei, where i = 1, 2

Theorem 4.2. Let pi : Ei → B be a function where i = 1, 2, then the consequently, these:

(1) Regarding all m-discs Dm, pi has the homotopy covering property.
(2) Regarding all pair (Dm, Sm−1), pi has M-relative homotopy covering property.
(3) pi has the M-relative homotopy covering property with recpect to all CW-pairs (X, Ai).

Proof. 1) ⇒ 2) : It is visually obvious, and not hard to prove, that the pair (Di
m × I, Di

m × 0 ∪ Si
m−1 × I) is 

homeomorphic to the pair (Di
m × I, Di

m × 0).The desired implication follows easily from this.
2) ⇒ 3) : Suppose that a lift H́i is already given on Ai × I. We extend H́i over Xi

m × I ∪ Ai × I by induc-
tion on m. At the inductive step, we reduce to constructing a homotopy in a diagram of the form

 

Dmi × 0∪ Sm− 1i × I Ei

Dmi × I B

pi

ht

H́ i

Such a homotopy exists by assumption (2).
3) ⇒ 1) : This is immediate, taking Ai = ∅.
Taking B to be a point in (3), we have incidentally proved. This is a proof.

Definition 4.3. Let p : E1 → X , q : E2 → X and α : E2 → E1 be a given maps. By a slicing structure for 
p, q, we mean a collection S = {ω, ε, ϕu, ϕv } of the following entities:

(1) A system ω = {U} and ε = {V} of open sets of X which covers X, called the M-slicing neighborhoods.
(2) A system of maps {ϕU |U ∈ ω} and {ϕV |V ∈ ε} indexed by the M-slicing neighborhoods, called 

the M-slicing function, where each ϕU, ϕV , is defined on the subspace U × p−1(U), V × q−1(V ) 
respective of the product space X × E1, X × E2 respective with images in E1, E2 in such a way 
that the following two conditions are satisfied:

 (SF1)
 pϕU(a,e1) = a,  where a ∈ U, e1 ∈ p–1(U)

 And
 qϕV(b, e2) = b,  where b ∈ V, e2 ∈ q−1(V).

 (SF2) 
 ϕU(p(e1), e1) = e1  (e1 ∈ p−1(U))

 And
 ϕV(q(e2), e2) = e2  (e2 ∈ q−1(V ))
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Definition 4.4. If a M-slicing structure S = {ω, ε, ϕU , ϕV} for p, q exists, we say that p : E1 → X , q : E2 
→ X has the M-slicing structure property (MSSP). If p : E1 → X , q : E2 → X has the MSSP then ξ = (Ei, 
p, q, X ) is called a Hu M-fibre space, where i = 1, 2.

Definition 4.5. A space X is Mixed Locally Equi-Connected (M-LEC) if it has a cover by open sets V,U 
and for each V and U, a connecting maps σ1 : U × U → XI and σ2 : V × V → XI such that:
σ1(x1, y1)(0) = x1, σ1(x1, y1)(1) = y1, and σ1(x1, x1)(t) = x1.
σ2(x2, y2)(0) = x2, σ2(x2, y2)(1) = y2, and σ2(x2, x2)(t) = x2.

Theorem 4.6. If B is M-Locally Equi-Connected (M-LEC), then each regular M-Serre fibre space  
(Ei, p, q, B) is a Hu M-fibre space.

Proof. Since (Ei, p, q, B) is a regular M-Serre fibration, we have a regular lifting functions

 λ : Ωp → EI
1

and

 δ : Ωq → EI
2

where

 Ωp = {(e1, ω) ∈ E1 × BI |p(e1) = ω(0)},

 Ωq = {(e2, ε) ∈ E2 × BI |q(e2) = ε(0)},

and

 λ(e1, ω)(0) = e1, pλ(e1, ω) = ω, 

 δ(e2, ε)(0) = e2, qδ(e2, ε) = ε

and if ω, ε are constants, then λ(e1, ω) and δ(e2, ε) are also a constant. Then we may define

 ϕµ : Uµ × p−1(Uµ) → E1,

 ϕυ : Vυ × q−1(Vυ ) → E2.

X × E2 X × E1

E2 E1

X
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By

 Qµ(a, e1) = λ(e1, σµ(p(e1), a)(1)), 

 Qυ (b, e2) = δ(e2, συ (q(e2), b)(1)).

Where {Uµ} and {Vυ } are cover for B and {σµ}, {συ} are connecting maps.
Qµ, Qυ are a M-slicing function so (Ei, p, q, B) is a Hu M-fibre space.
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