Mohammad Nazrul Islam Khan ${ }^{\text {a夫 }}$, Abdul Haseeb ${ }^{\text {b }}$
${ }^{a}$ Department of Computer Engineering, College of Computer, Qassim University, Buraydah 51452, Saudi Arabia; ${ }^{\text {b Department of }}$ Mathematics, College of Science, Jazan University, Jazan 45142, Saudi Arabia

Abstract

The aim of the present paper is to study the geometry of n-dimensional differentiable manifolds endowed with the $\digamma\left(a_{0}, a_{1}, \ldots, a_{n}\right)$-structure satisfying $a_{n} \digamma^{n}+a_{n-1} \digamma^{n-1}+\ldots . . .+a_{1} \digamma+a_{0} I=0$ and establish its existence. Also, it is proved that for the complex numbers the dimension of a manifold \mathcal{M} endowed with the $\digamma\left(a_{0}, a_{1}, \ldots ., a_{n}\right)$-structure is even. Furthermore, we study the Nijenhuis tensor of a tensor field \digamma of type (1,1) satisfying the general quadratic equation, which is a particular case of the $\digamma\left(a_{0}, a_{1}, \ldots, a_{n}\right)$-structure. At last, we study the integrability conditions of the $\digamma\left(a_{0}, a_{1}, \ldots, a_{n}\right)$-structure.

Key words: Manifold, Distribution, Integrability, Differential equations.

1. Introduction

In [1], Yano developed the idea of an f-structure on a differentiable manifold \mathcal{M} as a tensor field $f(\neq 0)$ of type (1, 1) fulfilling $f^{3}+f=0$. Goldberg and Yano [2] proposed the idea of an n-degree polynomial structure of on \mathcal{M} which is generalization the f-structure and investigate its geometric properties. Later on, Debnath and Konar [3] contributed some significant findings by introducing a novel kind of almost quadratic ϕ-structure on a differentiable manifold \mathcal{M}. Recently, Gök et al. [4] developed and explored the concepts of a $f_{(a, b)}(3,2,1)$-structure on $\mathcal{M} . f$-structures have also been investigated in [5-14]. Motivated by above mentioned studies, we study the geometry of n-dimensional differentiable manifolds endowed with $\digamma\left(a_{0}, a_{1}, \ldots ., a_{n}\right)$-structure and investigate some geometric properties of it.

[^0]2. $\digamma\left(a_{0}, a_{1}, \ldots ., a_{n}\right)$-structure

Let \mathcal{M} be an n-dimensional differentiable manifold of the class C^{∞} and \digamma be a non-null tensor field of type (1,1) satisfying

$$
\begin{equation*}
a_{n} \digamma^{n}+a_{n-1} \digamma^{n-1}+\ldots+a_{1} \digamma+a_{0} I=0, \tag{2.1}
\end{equation*}
$$

where ($a_{0}, a_{1}, \ldots, a_{n}$) are non-zero real numbers.
Operating U in (2.1), we infer

$$
\begin{equation*}
a_{n} \digamma^{n} U+a_{n-1} \digamma^{n-1} U+\ldots \ldots . .+a_{1} \digamma U+a_{0} U=0 \tag{2.2}
\end{equation*}
$$

where $U \in \Im_{0}^{1}(\mathcal{M})$.
A manifold \mathcal{M} endowed with $\digamma\left(a_{0}, a_{1}, \ldots ., a_{n}\right)$-structure is called $\digamma\left(a_{0}, a_{1}, \ldots ., a_{n}\right)$-structure manifold.
Remark: $\Im_{0}^{1}(\mathcal{M})$ and $\Im_{1}^{1}(\mathcal{M})$ denote a vector field and a tensor field of type $(1,1)$ in \mathcal{M}, respectively.
Theorem 2.1. The rank of $\digamma \in \Im_{1}^{1}(\mathcal{M})$ in an $\digamma\left(a_{0}, a_{1}, \ldots, a_{n}\right)$-structure is equal to the dimension of \mathcal{M}.
Proof. Let $\digamma U=0 \Rightarrow \digamma^{2} U=0, \ldots \ldots, \digamma^{n} U=0$.
From (2.2), we acquire

$$
a_{0} U=0 \Rightarrow U=0, a_{0} \neq 0
$$

Let $\mathcal{T} \mathcal{M}$ be the tangent space of \mathcal{M} and the Kernel of \digamma is the trivial subspace $\{0\}$ of $\mathcal{T} \mathcal{M}$. The nullity of \digamma is denoted by v, then $v=0$. If the rank of \digamma is ρ, then from [15]

$$
\begin{equation*}
v+\rho=n, \tag{2.3}
\end{equation*}
$$

which by $v=0$ gives $\rho=n$. This completes the proof.

Theorem 2.2. For the complex number, the dimension of \mathcal{M} endowed with $\digamma\left(a_{0}, a_{1}, \ldots, a_{n}\right)$-structure is even.
Proof. Assume that ζ be the eigen value of \digamma and E be the associated eigen vector.
Then

$$
\digamma E=\zeta E, \digamma^{2} E=\zeta^{2} E, \ldots \ldots . ., \digamma^{n} E=\zeta^{\mathrm{n}} E .
$$

From (2.2), we have

$$
a_{n} \zeta^{n}+a_{n-1} \zeta^{n-1}+\ldots+a_{1} \zeta+a_{0} I=0
$$

and

$$
\begin{equation*}
a_{n} \zeta^{n} E+a_{n-1} \zeta^{n-1} \mathrm{E}+\ldots \ldots . .+a_{1} \zeta E+a_{0} E=0 \tag{2.4}
\end{equation*}
$$

The roots of (2.4) will be real and complex numbers and defined by

$$
\begin{align*}
(i) \sum_{i=1}^{n} \zeta_{i} & =-\frac{a_{n-1}}{a_{n}}, \\
\text { (ii) } \sum_{i, j=1}^{n} \zeta_{i} \zeta_{j} & =\frac{a_{n-2}}{a_{n}}, \tag{2.5}\\
\left(\text { iiii) } \sum_{i_{i}, i_{2}, \ldots, i_{k}}^{n} \zeta_{i_{1}} \zeta_{i_{2}} \ldots \ldots \zeta_{i_{k}}\right. & =(-1)^{k} \frac{a_{n-k}}{a_{n}} .
\end{align*}
$$

The complex eigen values of \digamma are of the form $\alpha \pm \beta i$ and occur in pairs. In the light of this fact, the $\operatorname{dim}(\mathcal{M})=n$ must be even.

Theorem 2.3. The $\digamma\left(a_{0}, a_{1}, \ldots ., a_{n}\right)$-structure on \mathcal{M} is not unique.
Proof. $\forall \digamma^{\prime} \in \Im_{1}^{1}(\mathcal{M})$ and $U \in \Im_{0}^{1}(\mathcal{M})$, we have

$$
\begin{equation*}
\mu\left(\digamma^{\prime}(U)\right)=\digamma(\mu(U)), \tag{2.6}
\end{equation*}
$$

where $\mu(\neq 0)$ is a vector valued function. We also have

$$
\begin{aligned}
\mu\left(\digamma^{\prime 2}(U)\right) & =\mu\left(\digamma^{\prime}\left(\digamma^{\prime} U\right)\right), \\
& =\digamma\left(\mu\left(\left(\digamma^{\prime} U\right)\right)\right), \\
& =\digamma(\digamma(\mu(U)), \\
& =\digamma^{2}(\mu(U)) .
\end{aligned}
$$

In a similar manner, we infer

$$
\mu\left(\digamma^{\prime 3}(U)\right)=\digamma^{3}(\mu(U)), \ldots \ldots, \mu\left(\digamma^{\prime n}(U)\right)=\digamma^{n}(\mu(U))
$$

Further, we acquire

$$
\begin{align*}
& \mu\left\{a_{n} \digamma^{\prime n} U+a_{n-1} \digamma^{\prime n-1} U+\ldots \ldots+a_{1} \digamma^{\prime} U+a_{0} U\right\} \\
= & \left.a_{n} \digamma^{n}(\mu(U))+a_{n-1} \digamma^{n-1}(\mu(U))+\ldots . .+a_{1} \digamma(\mu(U))+a_{0} \mu(U)\right) \tag{2.7}\\
= & 0
\end{align*}
$$

This implies that

$$
a_{n} \digamma^{\prime n} U+a_{n-1} \digamma^{\prime n-1} U+\ldots . . .+a_{1} \digamma^{\prime} U+a_{0} U=0
$$

Thus, \digamma^{\prime} gives the $\digamma^{\prime}\left(a_{0}, a_{1}, \ldots, a_{n}\right)$-structure on \mathcal{M}.

3. Existence Conditions

The necessary and sufficient condition for the even dimensional manifold $M^{2 k m}$ endowed with an $\digamma^{\prime}\left(a_{0}, a_{1}, \ldots, a_{n}\right)$-structure for only complex numbers is established.

Theorem 3.1 It is necessary and sufficient that an even dimensional manifold $\mathcal{M}^{2 k m}$ contains k distributions π_{m}^{j} and $\tilde{\pi}_{m}^{j}, j=1,2, \ldots, k\left(\tilde{\pi}_{m}^{j}\right.$ is the conjugate of $\left.\pi_{m}^{j}\right)$ of dimension m in such a way that both are disjoint and span an even dimensional manifold of dimension 2 km in order to admit the $\digamma\left(a_{0}, a_{1}, \ldots, a_{n}\right)$-structure for only the complex numbers.
Proof. Let us consider an even dimensional manifold $\mathcal{M}^{2 k m}$ endowed with the $\digamma\left(a_{0}, a_{1}, \ldots ., a_{n}\right)$-structure for only complex numbers. Then \digamma contains k sets of m eigen values of the type $\alpha_{j}+i \beta_{j}$ and k sets of m eigen values of the type $\alpha_{j}-i \beta_{j}, j=1,2, \ldots, k \in N$, where N is a set of natural numbers.
Let P_{u}^{j} and $Q_{u}^{j}, u=1,2, \ldots, m$ be m eigen vectors associated to m eigen values $\alpha_{j}+i \beta_{j}$ and $\alpha_{j}-i \beta_{j}$, respectively of \digamma.

Let

$$
\begin{equation*}
b_{j}^{u} P_{u}^{j}+c_{j}^{u} Q_{u}^{j}=0, b_{j}^{u}, c_{j}^{u} \in R . \tag{3.1}
\end{equation*}
$$

Operating \digamma on (3.1) and using the property that P_{u}^{j}, Q_{u}^{j} are the eigen vectors associated with $\alpha_{j}+$ $i \beta_{j}$ and $\alpha_{j}-i \beta_{j}$ of \digamma, we get

$$
\begin{equation*}
\left(b_{l}^{u} P_{u}^{l}-c_{l}^{u} Q_{u}^{l}\right)\left(b_{j}^{u} P_{u}^{j}+c_{j}^{u} Q_{u}^{j}\right)=0, b_{l}^{u}, c_{l}^{u} \in R, u=1,2, \ldots, m ; l=1,2, \ldots, k, \tag{3.2}
\end{equation*}
$$

where R is a set of real numbers.

From (3.1) and (3.2), we infer $b_{l}^{u}=0$ and $c_{l}^{u}=0, u=1,2, \ldots, m ; j=l$. Thus, the set $\left\{P_{u}^{l}, Q_{u}^{l}\right\}$ is linearly independent. Similarly we find, $b_{j}^{u}=0$ and $c_{j}^{u}=0, \forall u=1,2, \ldots, m ; j=1,2, \ldots, k$. Hence the set $\left\{P_{u}^{l}, Q_{u}^{l}\right\}$ is linearly independent.

Let projections L_{j} and M_{j} be the linear transformations defined by [16]

$$
\begin{equation*}
L_{j}(U)=\digamma U-\left(\alpha_{j}-i \beta_{j}\right) U, \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
M_{j}(U)=\digamma U-\left(\alpha_{j}-i \beta_{j}\right) U . \tag{3.4}
\end{equation*}
$$

Obiously, we have

$$
\begin{align*}
L_{j}\left(P_{u}^{j}\right) & =2 i \beta_{j} P_{u}^{j}, \\
L_{j}\left(Q_{u}^{j}\right) & =0, \\
M_{j}\left(P_{u}^{j}\right) & =0, \tag{3.5}\\
M_{j}\left(Q_{u}^{j}\right) & =-2 i \beta_{j} Q_{u}^{j} .
\end{align*}
$$

Thus there are k distributions π_{m}^{j} and $\tilde{\pi}_{m}^{j}$ with dimension m, all of which are disjoint and span a manifold of dimension 2 km .

On contrary, suppose that there are k distributions π_{m}^{j} and $\tilde{\pi}_{m}^{j}$ with dimension m, all of which without having common direction and span a manifold of dimension 2 km .

Let us consider P_{u}^{j} and Q_{u}^{j} be the eigen vectors for k distributions π_{m}^{j} and $\tilde{\pi}_{m}^{j}$, respectively. Then the set $\left\{P_{u}^{j}, Q_{u}^{j}\right\}$ is linearly independent.

Let $\left\{p_{u}^{j}, q_{u}^{j}\right\}$ be 1 -forms dual to $\left\{P_{u}^{j}, Q_{u}^{j}\right\}$ such that

$$
\begin{align*}
& p_{u}^{j}\left(P_{v}^{j}\right)=\zeta_{v}^{u}, \\
& p_{u}^{j}\left(Q_{v}^{j}\right)=0, \\
& q_{u}^{j}\left(P_{v}^{j}\right)=0, \tag{3.6}\\
& q_{u}^{j}\left(Q_{v}^{j}\right)=\zeta_{v}^{u},
\end{align*}
$$

and

$$
\begin{equation*}
p_{j}^{u}(u) P_{u}^{j}+q_{j}^{u}(u) Q_{u}^{j}=U . \tag{3.7}
\end{equation*}
$$

Operating F on (3.7) and using the fact that P_{u}^{l} and Q_{u}^{l} are eigen vectors for the eigen values $\alpha_{l}+$ $i \beta_{l}$ and $\alpha_{l}-i \beta_{l}$ respectively, then we have

$$
\begin{equation*}
\left[\left(\alpha_{l}+i \beta_{l}\right) p_{l}^{u}(U) P_{l}^{l}+\left(\alpha_{l}-i \beta_{l}\right) q_{l}^{u}(U) Q_{u}^{l}\right]\left[p_{j}^{u}(U) P_{u}^{j}+q_{j}^{u}(U) Q_{u}^{j}\right]=\digamma U . \tag{3.8}
\end{equation*}
$$

Thus from (3.7) and (3.8), we get

$$
\begin{equation*}
\digamma U=\alpha_{l} U+\left[i \beta_{l}\left(p_{l}^{u}(U) P_{u}^{l}-q_{l}^{u}(U) Q_{u}^{l}\right]\left[p_{j}^{u}(U) P_{u}^{j}+q_{j}^{u}(U) Q_{u}^{j}\right] .\right. \tag{3.9}
\end{equation*}
$$

Now again operating \digamma on (3.8) and using the same fact that P_{u}^{l}, Q_{u}^{l} are eigen vectors for the eigen values $\alpha_{l}+i \beta_{l}$ and $\alpha_{l}-i \beta_{l}$ of \digamma, we get

$$
\begin{equation*}
\digamma^{2} \mathrm{U}=\left[\left(\alpha_{l}+i \beta_{l}\right)^{2}\left(p_{l}^{u}(U) P_{u}^{l}+\left(\alpha_{l}+i \beta_{l}\right)^{2} q_{l}^{u}(U) Q_{u}^{l}\right)\right]\left[p_{j}^{u}(U) P_{u}^{j}+q_{j}^{u}(U) \boldsymbol{Q}_{u}^{j}\right] . \tag{3.10}
\end{equation*}
$$

Making use of (3.7), (3.9) and (3.10), we infer

$$
\begin{equation*}
\digamma^{2} U-2 \alpha_{l} \digamma U+\left(\alpha_{l}^{2}+i \beta_{l}^{2}\right) U=0 . \tag{3.11}
\end{equation*}
$$

Similarly, we can find $\digamma^{3}, \digamma^{4}, \ldots . . ., \digamma^{\mathrm{n}}$ by considering only the complex roots.
Thus only for the complex numbers, the manifold $M^{2 k m}$ (even dimension) is endowed with $\digamma\left(a_{0}, a_{1}, \ldots, a_{n}\right)$-structure.

4. The Nijenhuis Tensor

In this section, we study the Nijenhuis tensor of a tensor field \digamma of type (1,1) satisfying the general quadratic equation which is a particular case of the $\digamma\left(a_{0}, \alpha_{1}, \ldots, a_{n}\right)$-structure.

Let $\digamma(\neq 0) \in \Im_{1}^{1}(\mathcal{M})$ satisfying the general quadratic structure [17]

$$
\begin{equation*}
\digamma^{2}+a_{1} \digamma+a_{0} \mathrm{I}=0, \tag{4.1}
\end{equation*}
$$

where a_{0}, a_{1} are real numbers.
The Nijenhuis tensor of \digamma is defined by

$$
\begin{equation*}
N(U, V)=[\digamma U, \digamma V]+\digamma^{2}[U, V]-\digamma[\digamma U, V]-\digamma[U, \digamma V], \tag{4.2}
\end{equation*}
$$

$\forall U, V \in \Im_{0}^{1}(\mathcal{M})[18]$.

Theorem 4.1. Let $\digamma(\neq 0) \in \Im_{1}^{1}(\mathcal{M})$ and $\mathrm{U}, V \in \Im_{0}^{1}(\mathcal{M})$. Then

$$
\begin{align*}
N(U, \digamma V) & =\mathrm{N}(\digamma U, V), \tag{4.3}\\
N(\digamma U, \digamma V) & =a_{1}^{2}[\digamma U, \digamma V]+a_{0} a_{1}[\digamma U, V]+a_{0}^{2}[U, V]-a_{0}[\digamma U, \digamma V]+a_{1} \digamma[\digamma U, \digamma V] \\
& +a_{0} \digamma[U, \digamma V]+a_{0} \digamma[\digamma U, V] . \tag{4.4}
\end{align*}
$$

Proof. By replacing U by $\digamma U$ in (4.2), we have

$$
N(\digamma U, V)=\left[\digamma^{2} U, \digamma V\right]+\digamma^{2}[\digamma U, V]-\digamma\left[\digamma^{2} U, V\right]-\digamma[\digamma U, \digamma V],
$$

which by using (4.1) becomes

$$
\begin{equation*}
N(\digamma U, V)=-a_{1}[\digamma U, \digamma V]-a_{0}[U, \digamma V]-a_{0}[\digamma U, V]+a_{0} \digamma[U, V]-\digamma[\digamma U, \digamma V] . \tag{4.5}
\end{equation*}
$$

By replacing V by $\digamma V$ in (4.2) and using (4.1), we have

$$
\begin{equation*}
N(U, \digamma V)=-a_{1}[\digamma U, \digamma V]-a_{0}[U, \digamma V]-a_{0}[\digamma U, V]+a_{0} \digamma[U, V]-\digamma[\digamma U, \digamma V] . \tag{4.6}
\end{equation*}
$$

By replacing U by $\digamma U$ and V by $\digamma V$ in (4.2) and using (4.1), we lead to

$$
\begin{align*}
N(\digamma U, \digamma V) & =a_{1}^{2}[\digamma U, \digamma V]+a_{0} a_{1}[\digamma U, V]+a_{0}^{2}[U, V]-a_{0}[\digamma U, \digamma V] \\
& +a_{1} \digamma[\digamma U, \digamma V]+a_{0} \digamma[U, \digamma V]+a_{0} \digamma[\digamma U, V] . \tag{4.7}
\end{align*}
$$

Equations (4.5), (4.6) and (4.7) lead to the proof of the theorem.

5. Integrability Conditions

In this section, we discuss the integrability conditions of $\digamma\left(a_{0}, a_{1}, \ldots, a_{n}\right)$-structure with the distributions π_{m}^{j} and $\tilde{\pi}_{m}^{j}$.

Theorem 5.1. The necessary and sufficient condition for the k distribution π_{m}^{j} to be integrable

$$
\begin{equation*}
\left(d M_{j}\right)(U, V)=0 \tag{5.1}
\end{equation*}
$$

Proof. Suppose the distribution π_{m}^{j} is integrable, then [19]

$$
U, V \in \pi_{m}^{j} \Rightarrow[U, V] \in \pi_{m}^{j}
$$

Therefore, we have

$$
\begin{equation*}
M_{j}(U)=0, M_{j}(V)=0, M_{j}([U, V])=0 . \tag{5.2}
\end{equation*}
$$

As we know

$$
\begin{equation*}
\left(d M_{j}\right)(U, V)=U \cdot M_{j}(U)-V \cdot M_{j}(V)-M_{j}([U, V]), \tag{5.3}
\end{equation*}
$$

which by making the use of (5.2) reduces to

$$
\begin{equation*}
\left(d M_{j}\right)(U, V)=0 \tag{5.4}
\end{equation*}
$$

Thus the condition is necessary.
On contrary, assume that the differential equations $\left(d M_{j}\right)(U, V)=0, \forall U, V \in k$ distributions π_{m}^{j} that is the differential equations

$$
\left(d M_{j}\right)(U, V)=0, \forall j=1,2, \ldots, k .
$$

Thus, $M_{j}([U, V])=0$, as $M_{j}(U)=0=M_{j}(V)$.
Now, we have

$$
\begin{aligned}
L j([U, V]) & =\digamma[U, V]-\left(\alpha_{j}-i \beta_{j}\right)[U, V] \\
& =\left(\alpha_{j}+i \beta_{j}\right)[U, V]-\left(\alpha_{j}-i \beta_{j}\right)[U, V] \\
& =2 i \beta_{j}[U, V] .
\end{aligned}
$$

If U, V belong to the distributions π_{m}^{j}, then $[U, V]$ also belong to the distributions π_{m}^{j}. Thus π_{m}^{j} is integrable [20].

Theorem 5.2. The necessary and sufficient condition for the k distributions π_{m}^{j} is integrable if and only if differential equations $\left(d L_{j}\right)(U, V)=0, \forall j=1,2, \ldots, k$.
Proof. Similar to Theorem 5.1, the proof is straightforward.

Acknowledgment

Researchers would like to thank the Deanship of Scientific Research, Qassim University for funding publication of this project.

References

[1] K. Yano, On a structure defined by a tensor field f of type (1, 1) satisfying $f^{3}+f=0$, Tensor (N. S.), 14(1963), 99-109.
[2] S. I. Goldberg and K. Yano, Polynomial structures on manifolds, Kodai Math. Sem. Rep., 22(1970), 199-218.
[3] P. Debnath and A. Konar, A new type of structure on differentiable manifold, Int. Elec. J. Geom., 4(2011), 102-114.
[4] M. Gök, E. Kilic and C. Özgür, $f_{(a, b)}(3,2,1)$-structures on manifolds, Journal of Geometry and Physics, 169(2021), 104346.
[5] D. E. Blair, Geometry of manifolds with structural group $U(n) \times O(s)$, J. Differ. Geom., 4(2)(1970), 155-167.
[6] M. N. I. Khan, Liftings from a Para-Sasakian manifold to its tangent bundles, FILOMAT, 37(20), 6727-6740, 2023.
[7] M. N. I. Khan, On Cauchy-Riemann structures and the general even order structure, Journal of Science and Arts, 53(4) (2020), 801-808.
[8] M. N. I. Khan and, L. S. Das, Parallelism of distributions and geodesics on $F(\pm a 2, \pm b 2)$-structure Lagrangian manifold, Facta Universitatis, Series: Mathematics and Informatics, 36(1) (2021), 157-163.
[9] M. N. I. Khan, Lifts of $F(\alpha, \beta)(3,2,1)$-structures from manifolds to tangent bundles, Facta Universitatis, Series: Mathematics and Informatics 38 (1) (2023), 209-218.
[10] M. N. I. Khan, Proposed theorems for lifts of the extended almost complex structures on the complex manifold, AsianEuropean Journal of Mathematics, 15(11)(2022), 2250200.
[11] R. S. Millman, f-structures with parallelizable kernel on manifolds, J. Differ. Geom., 9(4)(1974) 531-535.
[12] H. Nakagawa, f-structures induced on submanifolds in spaces, almost Hermitian or Kaehlerian, Kodai Math. Sem. Rep., 18(2)(1966), 161-183.
[13] N. D. Polyakor, Differential geometry of f-structure manifolds, Journal of Soviet Mathematics, 29(1985), 1571-1592.
[14] R. E. Stong, The rank of an f-structure, Kodai Math. Sem. Rep., 29(1-2)(1977), 207-209.
[15] L. S. Das, R. Nivas and A. Singh, On a structure defined by a tensor field fof type (1,1) satisfying $\prod_{j=1}^{k}\left[F^{2}+\alpha(j) F+\lambda^{2}(j) I\right]$ = 0, Kyungpook Mathematical Journal, 50(4)(2010), 455-463.
[16] L. S. Das and R. Nivas, On differentiable manifolds with $[F 1 ; F 2](K+1 ; 1)$-structure, Tensor, N. S., 65(1)(2004), 29-35.
[17] M. N. I. Khan and L.S. Das, On CR-structures and the general quadratic structure, Journal for Geometry and Graphics, 24(4)(2020), 249-255.
[18] B. B. Sinha and R. Sharma, On a special quadratic structure on differentiable manifolds, Indian J. Pure Appl. Math., 9(8)(1978), 811-817.
[19] L. S. Das, On CR-structures and F-structure satisfying $F^{k}+(-)^{k+1} F=0$, Rocky Mountain Journal of Mathematics, 36(3) (2006), 85-892.
[20] M. N. I. Khan, Integrability of the metallic structures on the frame bundle, Kyungpook Mathematical Journal, 61(4)2021, 791-803.

[^0]: Email addresses: m.nazrul@qu.edu.sa (Mohammad Nazrul Islam Khan)*, haseeb@jazanu.edu.sa (Abdul Haseeb)
 *Corresponding Author

