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Abstract
The concepts of Tor–prime and Strongly Tor–prime submodules are introduced and investigated. 
A proper submodule N is called Tor–prime submodule (resp. Strongly Tor-prime), if rm N∈  (resp. 
(( ) : ( )) )N Rx Tor M y N� � , then m N∈  or rTor M N( ) ⊆  (resp. x ∈ N  or y N∈ ). A proper submodule 
P is Tor–prime submodule of M if and only if PS  is a Tor–prime (res. Strongly Tor–prime) submodule 
in MS , where S is a prime ideal of R. A finitely generated module M is Noetherian if and only if every 
Tor–prime submodule of M is finitely generated. Furthermore, the Cohen Theorem can be generalized 
for these new classes of submodules.
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1. Introduction

A proper submodule N  is called prime if M
N

 is a prime module. In the other word, if rm N∈ , then 

either m N∈  or rM N⊆  for any r R m M∈ ∈,  [1]. There has been a great deal of studding on prime 
submodules and their generalizations. For more knowledge about prime submodules, we recommend 
to see the references [1–8]. The notion of prime submodule plays an important role in the theory of 
rings and modules. Let N  be a proper submodule of an R-module M . The module M  is prime if and 
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only if the zero submodule of M  is prime. The submodule N  of M  is said to be Strongly prime, if 
whenever (( ) : )N Rx M y N� � , then x N∈  or y N∈  [3]. It is well-known that every strongly prime is 
submodule prime. Also, N  is called weakly prime submodule if r R∈  and m M∈  such that 0 � �mr N , 
then either m N∈  or rM N⊆  and N  is called an n-almost prime submodule of M , if r R∈  and m M∈  

such that rm N N M Nn� � ( : ) , then either m N∈  or rM N⊆  [3]. Bataineh [3] proved that N  is  

n-almost prime submodule of M  if and only if N
N M Nn( : )

 is a weakly prime submodule in M
N M Nn( : )

.

The notion of Tor −prime and strongly Tor −prime submodules are introduce as a generaliza-
tion of prime and Strongly prime submodules. A proper submodule N  is called Tor −prime (resp. 
Tor −strongly prime), if rm N∈  (resp. (( ) : ( )) )N Rx Tor M y N� � , then m N∈  or rTor M N( ) ⊆  (resp. 
x N∈  or y N∈ ). A module is called Tor −prime, if zero submodule is Tor −prime. If M  is a nonzero  
R-module. Then M  is Tor −prime module if and only if Ann N Ann Tor M( ) = ( ( )), for every nonzero 
submodule N  of M . Let M M

i
n

i=
=1⊕ . Then Mi  is a Tor −prime submodule of M  if and only if Mi  

is a Tor −prime module, for each i n=1,2, ,… . Every prime (resp. strongly prime) submodule is Tor −  
prime (resp. Tor −  strongly prime) submodule. But the converse need not be true in general, see 
Example 2.2. Suppose that M  is a torsion module, then every Tor −  prime submodule is prime sub-
module. This means that for a torsion module, Tor −prime property is a necessary and sufficient 
condition for a prime submodule. Suppose that M  is a finitely generated R-module. Then M  is a 
Noetherian module if and only if every Tor −  prime submodule of M  is finitely generated. Suppose 
that P  is a proper submodule of M  and S  is a prime(or maximal) ideal of R such that P MS S≠ . Then 
P  is a Tor −prime (res. Strongly Tor −prime) submodule of M  if and only if PS  is a Tor −prime (res. 
Strongly Tor −prime) submodule in MS . And consequently, M  is a Tor −prime module if and only 
if MS  is a Tor −prime module. If P1 is a strongly Tor −prime (res. Tor −semiprime or strongly Tor −
semiprime) submodule of M1 . Then P M1 2×  is a strongly Tor −prime (res. Tor −semiprime or strongly 
Tor −semiprime) submodule of M . As a result, if P1 and P2 are Tor −prime submodules of Mi . Then 
P P1 2×  is a Tor −prime submodule of M .

Unless stated otherwise, all rings are associative and have identity, all modules are unital left  
R-modules. If N  is a submodule of M , then ( : ) = { : }N M r R rM N� �  [9]. We focus on the torsion 
elements of M  and we denote Tor M( ) for the set of all torsion elements of M . A module M  is called 
torsion free if Tor M( ) = 0, while M  is said to be torsion module if Tor M M( ) = . If R is an integral 

domain, then Tor M( ) is a submodule of M  and M
Tor M( )

 is a torsion free module. If R is not integral 

domain, then Tor M( ) need not be submodule and M
Tor M( )

 need not be torsion free while Tor M( ) is 

submodule. We consider that all the Tor M( ) is torsionable in this paper [10]. If S  is a multiplicative 
closed system, then MS  is an RS -module which is called the localization (quotient) of M  at S  [11]. If 
P  is a prime ideal in R, then R S−  forms a multiplicative closed system, then we denote MP  for the 
localization of M  at R S− .

2. Tor–prime and Strongly Tor–prime submodules

In this section, we define Tor–prime and Strongly Tor–prime submodules as generalizations of prime 
and Strongly prime submodules. A proper submodule N  of M  is said to be prime (resp. Strongly 
prime), if whenever rm N∈  (resp. (( ) : ) )N Rx M y N� � , then m N∈  or rM N⊆  (resp. x N∈  or y N∈ )  
[2, 3, 12]. We start with the following definition:
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Definition 2.1: Let M  be an R - module, and Tor M x M r R( ) = { ; 0� � � �  such that rx =  0}. Then a 
proper submodule N  is said to be a Tor–prime submodule, if whenever � �r m N  for ��r R  and m M∈ , 
then m N∈  or � �r Tor M N( ) .

Example 2.2:
 1. If R is an integral domain, then for any R-module M , we can show that Tor M M( ) ≠  is a Tor −

prime submodule.
 2. If M  is a projective (resp. flat) R-module and N  is a submodule of M . Then one can easily obtain 

that N  is a Tor–prime submodule.
 3. Z  is a Z -module and N = 4� �  is a proper submodule of Z  and Tor M( ) = {0} , then N  is a Tor–prime. 

But N  is not prime submodule since 2.2 = 4 4�� �  where 2∉N  and 2Z N  ssince 6 2∈ Z  but  
6 4�� � .

 4. Z8 = {0,1,2,3,4,5,6,7}  is a Z8-module and N1 = {0,2,4,6} and N2 = {0,4}  is a proper submodule of 
Z8 and Tor M( ) = {0,2,4,6} , then N1  is prime and Tor −prime and N2 is T -prime but not a prime 
submodule of Z8. 5- Consider Z12 = {0,1,2, ,11}…  as a Z -module. Then Tor Z Z12 12=� �  and N = {0,6} 
is a submodule of Z12  which it is not a Tor–prime submodule in Z12 . Since 2.3 = 6∈N , but 3∉N  
and 2 . Tor Z N12 = {0,2,4,6,8,10}� �  . Hence the above definition in nontrivial.

Proposition 2.3: Every prime submodule is a Tor–prime submodule.

Proof. Let N  be a prime submodule and rm N∈ . Then m N∈  or rM N⊆ , this implies that N  is 
Tor–prime.

The converse of Proposition 2.3 need not be true in general, from Example 2.2 (1 and 2), we explain 
this fact. Suppose that M  is a torsion module, then every Tor–prime submodule is a prime submodule. 
This means that for a torsion module, Tor–prime property is a necessary and sufficient condition for 
a prime submodule.

Theorem 2.4: Every submodule of a torsion free module is Tor–prime submodule.

Proof. Let M  be a torsion free module and N  be a submodule of M . If rm N∈  and m N∉ , then it is 
obvious that rTor M N( ) ⊆ . Hence N  is a Tor −prime submodule, for any arbitrary submodule N  of 
M .

If M  is a module over an integral domain. Then from Theorem 4 we conclude that every submodule 
of the quotient module M

Tor M( )
 is a Tor–prime submodule. That means the zero submodule ( ( ))Tor M  

is a Tor–prime submodule. Furthermore, in the following corollary we conduct that projective (flat) 
module is a Tor–prime module.

Corollary 2.5: Every submodule of projective (flat) modules is a Tor–prime submodule.

Theorem 2.6: Let M  and N  be two R-modules and f M N: →  be an epimorphism such that K  is a 
Tor −prime submodule of M  with kerf K⊆ . Then f K( ) is a Tor −prime submodule of N .

Proof. Let K  be a Tor −prime submodule in M . If f K N( ) = , then f K f M( ) = ( ). Now, for any m M∈ ,  
then f m N f K( ) = ( )∈ , this implies that f m f k( ) = ( ) , for some k K∈ , so m k� � kerf . We can write 
m m k k= � � , and this is an element of K kerf+ , so M K kerf= +  this contradict the assumption. 
Hence, f K N( ) ⊂ . If rm f K�� ( ), then there exists m K∈  such that ′m f m= ( ) . Since, rm K∈ , then 
m K∈  or rTor M K( ) ⊆ . If m K∈ , then ��m f K( ) and we are done. If m K∉ , then rTor M K( ) ⊆ , first 
we have to show the following: for any x ∈ Tor M( ), then there exists a nonzero element r  in R 
such that rx = 0 , this gives that rf x( ) = 0  and since f  is an epimorphism, then the converse is also 
true, in other hands we have f Tor M Tor N( ( )) = ( ) . Now, suppose that rn rTor N∈ ( ), then there exists 



Hamaali PM and Qadir RR, Results in Nonlinear Anal. 6 (2023), 82–89. 85

m Tor M1 ( )∈ , such that f m n( )1 = , since rTor M K( ) ⊆ , thus we obtain rn rf m f rm f K= = ( )1 1( ) ( )∈ . 
This completes the proof.

Proposition 2.7: Proposition 7. If M  and N  are two R-modules and f M N: →  be an epimorphism 
such that ′K  is a Tor −prime submodule of N  with f M K( ) � �. Then the inverse image of ′K  is a Tor −
prime submodule of M .

Proof. Suppose that f K M� �1 =( ) , then for any x M∈ , we have x f K� ��1( ), this means that f x K( )� � 
and it is a contradiction to the hypothesis. Let rx f K� ��1( ) . Then rf x K( )� �, since ′K  is a Tor −prime 
submodule, so f x K( )� � or rTor N K( ) � � . If f x K( )� �, then we are done, if f x K( )� �, then rTor N K( ) � � .  
Now, suppose that rm rTor M∈ ( ), for some m Tor M∈ ( ) . Then f m f Tor M Tor N( ) ( ( )) ( )� � . So, 
f rm rf m rTor N K( ) = ( ) ( )� � � . Hence rm∈ f K� �1( ) .

As a consequence of Theorem 6. If N  is a Tor −prime submodule of M  and K  is any submodule 
of M , which containing N . Then K

N
 is again form a Tor −prime submodule of M

N
. Suppose that M  

is a nonzero R-module. Then M  is said to be Tor −prime module if {0}  is Tor −  prime submodule in 
M , and M  is said to be almost fully Tor −prime module, if all proper submodules are Tor −  prime 
submodule. In the next theorem, we investigate the characteristic of Tor −prime module in terms of 
annihilator of its nonzero submodules.

Theorem 2.8: If M  is a nonzero R-module. Then M  is a Tor −prime module if and only if 
Ann N Ann Tor M( ) = ( ( )), for every nonzero submodule N  of M .

Proof. Let N  be a nonzero Tor −  prime submodule in M  and r Ann N∈ ( ). Then there exists a non-
zero element x  of N  such that rx = 0 , since {0}  is a Tor −prime submodule, then rTor N( ) {0}⊆ .  
Hence, r Ann Tor M∈ ( ( )) . In a similar argument we can show that Ann Tor M Ann N( ( )) ( )⊆ . For 
the converse, suppose that rm = 0 , for r R∈  and 0 � �m  Tor M( ), then by our assumption we have 
Ann Rm Ann Tor M( ) = ( ( )) , so rTor M( ) {0}⊆ . Hence {0}  is a Tor −  prime submodule in M .

If M  is a Tor −prime module, then from Theorem 6 we conclude that every direct summand of M  
is again Tor −prime module. In the following theorem we discuss this fact in general.

Theorem 2.9: Let M  be an R-module and M M
i
n

i=
=1⊕ . Then Mi  is a Tor −prime submodule of M  if 

and only if Mi  is a Tor −  prime module, for each i n=1,2, ,… .

Proof. Let Mi  be a Tor −prime submodule of M , for i n=1,2, ,… . Then {0}  is a direct summand in 
each submodule Mi , thus by Theorem 6 we obtain {0}  is a Tor −prime submodule in Mi  as required. 
Conversely, suppose that Mi  is a Tor −prime module for each i . Then the epimorphism f M Mi i: →  
defined by f m mi i i( ) ( )= ,0, ,0…  conducts that Mi  is a Tor −prime as a submodule of M .

In the following corollary, we obtain a characterization of Tor −prime module. This result is an 
application of Theorem 2.9.

Corollary 2.10: If M  is an R-module. Then the following properties are equivalent:

 1. M  is a Tor −  prime module,
 2. Every direct summand of M  are Tor −  prime submodule of M ,
 3. For all 0 , ( ) = ( ( ))� �m M Ann m Ann Tor M .

Proof. It is a consequence of Theorem 9 and definition of Tor −prime submodule. It is similar to  
[1, Proposition 1.2].

In the next proposition we investigate relation between Tor −prime and almost fully Tor −  prime 
modules.
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Proposition 2.11: Let M  be a module. Then M  is almost fully Tor −primary if and only if the follow-
ing conditions hold:

 1. M  is a Tor −  prime module,
 2. M  is an indecomposable.
 3. M  must have exactly two nonzero indecomposable Tor −  prime direct summands, say M1  and  

M2.

Proof. Suppose that M  is an almost fully Tor −prime module. On contrary, if the conditions does not hold. 
Since Mi  are submodules of M , then by our hypothesis Mi  are Tor −prime submodules of M , for i =1,2. 
So, Mi  are Tor −prime modules, this implies that Ann x( ) = Ann Tor M( ( ))1  and Ann y Ann Tor M( ) = 2( ( )),  
for every 0 1� �x M  and 0 2� �y M . We have to show that Ann Tor M Ann Tor M( ( )) ( ( ))1 2≠ . If 
Ann Tor M Ann Tor M( ( )) ( ( ))1 2= , then Ann m Ann Tor M( ) = ( ( )), for any 0 � �x M . Then M  is a Tor −
prime module, which is a contradiction. Without loss of generality, suppose that M1  is a decompos-
able. Then there exist two nonzero submodules H  and K  such that M H K1 = ⊕ . This gives that 
M P Q M= 2⊕ ⊕  and P Q⊕  is a Tor −prime submodule, that is Ann Tor Q Ann Tor M( ( )) = 2( ( )) . Then 
Ann Tor M Ann Tor M( ( )) ( ( ))1 2= , which is again contradiction. Hence M1  and M2 are indecomposable. 
It is easy to show that M1  and M2 are unique with the property (3). Conversely, if the conditions are 
hold, then it is obvious the submodules of M  would be Tor −prime submodule as desired.

From [1, corollary 1.8] and Proposition 11, we obtain the following result.

Corollary 2.12: Corollary 12. Let a module M  be the direct summand of two simple submodules. Then 
M  is Tor −prime or almost fully Tor −prime.

Suppose that � �: ( ) ( ) { }S M S M� �  is a function. Then a proper submodule P  of M  is said to be 
( 1, )n n� �� -prime, if whenever, a a a x P Pn1 2 1. { ( )}… � � � � , where a a a Rn1 2 1, , ,… � �  and x M∈ , 
then a a a a a x Pi i n1 2 1 1 1� � �� � �… …  or a a a M Pn1 2 1� ��…  [4]. In the following theorem we show that 
( 1, )n n� �� -prime property is a necessary condition for Tor −  prime property in a special case.

Theorem 2.13: If a proper submodule P  of M  is ( 1, )n n� �� -prime, where n =1 and φ( ) =P  φ . Then 
P  is a Tor −prime submodule.

Proof. It is obvious.

Definition 2.14: Let P M⊂ . Then P  is called strongly Tor −prime submodule, if (( ) : ( ))P Rx Tor M y P� � ,  
then x P∈  or y P∈ . Also, P  is strongly Tor −semiprime if (( ) : ( ))P Rx Tor M x P� � , then x P∈ .

If a proper submodule P  of M  is a strongly Tor −prime submodule. Then we claim that P  is Tor −
prime submodule. Suppose that P  is not a Tor −prime submodule of M , then there exist x M P� � { }  
such that rx P⊆ , whereas rTor M P( ) . This means that there exists y∈ Tor M( ) such that ry P∉ ,  
then (( ) : ( )) = (( ) : ( ))P Rx Tor M ry r P Rx Tor M y P� � � , and since P  is a strongly Tor −prime, then 
x P∈  or ry P∈  in each case we arrive to a contradiction. Hence every strongly Tor −prime submod-
ule is Tor −prime submodule, but the converse need not be true in general (See Example 2(3)). Since 
we have shown that N = 4� �  is a Tor −prime submodule of Z . Now, consider that M Z Z= ×  as a 
Z -module and P N N= × . It is clear that P  is a Tor −  prime submodule of M  and (( (2,0))P R+ : 
Tor M P P( ))(2,0) (2,0)⊆ ⊆ , where (2,0)∉P . In the next theorem, we discuss a condition for which the 
converse is hold.

Theorem 2.15: Let N  be a proper submodule of M . Then N  is strongly Tor −prime if and only if it is 
strongly Tor −semiprime and Tor −prime.

Proof. Let N  be strongly Tor −prime and (( )P Rx+  : Tor M x P( )) ⊆ , for x M∈ . Since N  is strongly 
Tor −prime, then we obtain x P∈ , this means that N  is strongly Tor −semiprime and by the above 
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explanation. Also, N  is Tor −prime. Conversely, suppose that N  is strongly Tor −semiprime and 
Tor −  prime. If (( )P Rx+  :Tor ( ))M y P⊆ , for x y M, ∈ , then there exists r P Rx Tor M� �(( ) : ( ))  such 
that ry P∈ , since P  is a Tor −prime submodule, then rTor M P( ) ⊆  and rTor M P Rx( ) � � . Hence 
Rx P⊆  as required.

The following diagram, explains the relations between these new classes of submodules and the 
classical classes:

In each case, the converse of the above diagram need not be true in general (see Example 2.2 and 
[3, 4, 7].

Proposition 2.16: Let N  be a Tor −prime submodule of M . Then N  contain a minimal Tor −prime 
submodule of M .

Proof. Suppose that F  is the set of all Tor −prime submodules of M  that contain in N . Since N F∈ , 
then F  is not empty set. So, by Zorn’s Lemma F  contains a minimal element with respect to the inclu-
sion relation. Now, we have to show that any chain L  in F  has a lower bound in F . Let Q UU L= � � ,  
where U  is Tor −  primesubmodule in M . Then for any r R m M∈ ∈,  such that rm U∈ , implies that 
m U∈  or rTor M U( ) ⊆ . First, we want to show Q  is a Tor −prime and it is contain in N . For this we 
suppose that rm Q∈ , then rm U∈ , for any U L∈ . If m Q∉ , then there exist U L∈  such that m U∉ ,  
but U  is a Tor −prime submodule, then we obtain rTor M U( ) ⊆ , for any U L∈ . Hence Q  is a Tor −
prime. Since the elements of L  are in F , then each elements are contained in N , this means that Q  
is also contained in N . Thus Q F∈  and it is a lower bound in F . By the same way as above we use 
Zorn’s Lemma on the lower bound in F , then there exist a minimal element Q'  among the Tor −  prime 
submodules containes in F  and any Tor −  prime submodule contain in Q'  is in F . Hence we obtain 
the fact that Q'  is the minimal Tor −prime submodule which contained in N .

The following theorem demonstrates how the structure of a finely generated module is influenced 
by Tor −prime submodules. In addition, this theorem can be regarded as a generalization of the theo-
rem of Cohen, a classic commutative algebra theorem.

Theorem 2.17: Suppose that M  is a finitely generated R-module. Then M  is a Noetherian module if 
and only if every Tor −  prime submodule of M  is finitely generated.

Proof. The (if) part is clear. The (only if) part is a consequence of Theorem 2.16.
If R is a ring, M  is an R-module and RS  is the ring of fraction of R at the multiplicatively closed 

set S R⊂ . Then an RS -module MS  is also an R-module which is constructed via the canonical map-

ping � �S S SR R rx r x r x: : = ( ) =
1

� , for any r R m M∈ ∈, . It is well-known that every submodules of 

MS  has the form NS , where N  is a submodule of M . The RS -module MS  constructed above is called 
the module of fractions with denominators in S (Localization of M  at S) [11]. From [10] it can be seen 
that Tor M Tor MS S( ) = � � . As a first result, we can show that there is a one to one correspondence 
between all Tor −  prime submodules P  of M  with ( : ( ))P Tor M ∩ S = φ  and the Tor −prime submod-
ules of MS . In the following theorem, we show that the properties of Tor −prime (semiprime), strongly 
Tor −prime (semiprime) can preserved under the localization.

Theorem 2.18: Let P  be a proper submodule of M S,  is a multiplicative closed set of R such that 
P MS S≠ . Then the following statements are hold:
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 1. If P  is a Tor −prime (res. Strongly Tor −prime) submodule of M , then PS  is a Tor −prime (res. 
Strongly Tor −  prime) submodule in MS .

 2. If P  is a Tor −semiprime (res. Strongly Tor −semiprime) submodule of M , then PS  is a Tor −semi-
prime (res. Strongly Tor −semiprime) submodule in MS .

Proof. We prove the first part and the second part can be in similar argument. Let P  be a Tor −prime 
submodule of M  and r

s
R m

t
MS S∈ ∈,  such that r

s
m
t

PS� � , where r R m M∈ ∈,  and s t S, ∈ . Then there 

exists u S∈  such that u r m P. . ∈  and since P  is a Tor −prime, then m P∈  or rTor M P( ) ⊆ . Then by the 

properties of Tor M( ) we obtain that m
t

PS∈  or r
s
Tor M PS S( ) ⊆ . Hence PS  is a Tor −prime submodule 

in MS . If P  is strongly Tor −prime submodule of M , then by the same way we can show that PS  is 
strongly Tor −prime submodule of MS .

If PS  is a Tor −prime submodule of MS , then it is not necessary to P  be Tor −prime submodule in 
M . Thus the converse of Theorem 18 need not be true in general. In the following corollary we inves-
tigate whether the converse is also hold.

Corollary 2.19: Let P  be a proper submodule of M S,  is a prime(or maximal) ideal of R such that 
P MS S≠ . Then the following statements are hold:

 1. P  is a Tor −prime (res. Strongly Tor −prime) submodule of M  if and only if PS  is a Tor −prime (res. 
Strongly Tor −prime) submodule in MS .

 2. P  is a Tor −semiprime (res. Strongly Tor −semiprime) submodule of M  if and only if PS  is a Tor −
semiprime (res. Strongly Tor −semiprime) submodule in MS .

 3. M  is a Tor −prime module if and only if MS  is a Tor −prime module.

Proof. It is similar to Theorem 2.18.
Consider that Ri  is commutative ring with identity and Mi  is an Ri -module, for i =1,2. Suppose that 

R R R= 1 2× , then M M M= 1 2×  is an R-module and the submodules of M  all are of the form N N1 1× , 
where Ni  is a submodule of Mi  and Tor M Tor M Tor M( ) = 1 2( ) ( )× . In the following theorem we discuss 
the relation between Tor −prime (res. Strongly Tor −prime) submodules of M  and M ii , =1,2.

Theorem 2.20: Let P1 be a Tor −prime submodule of M1 . Then P M1 2×  is a Tor −prime submodule of 
M .

Proof. Suppose that P1 is a Tor −prime submodule of M1  and ( )rm r m P M1 1 2 2 1 2, � � , where r R m Mi i i i∈ ∈, .  
Then rm P1 1 1∈  and since P1 is a Tor −  prime, so we have m P1 1∈  or rTor M P1 1 1( ) ⊆ . This means that 
( )m m P M1 2 1 2, � �  or ( ) ( ) ( ) ( )r r Tor M r r Tor M Tor M P M1 2 1 2 1 2 1 2, ( ) = , � � � . Hence P M1 2×  is a Tor −prime 
submodule of M .

We can easily follow the process of Theorem 20 to obtain the following properties: If P1 is a strongly 
Tor −prime (res. Tor −semiprime or strongly Tor −semiprime) submodule of M1 . Then P M1 2×  is 
a strongly Tor −prime (res. Tor −semiprime or strongly Tor −semiprime) submodule of M . As a 
result, if P1 and P2 are Tor −  prime submodules of Mi . Then P P1 2×  is a Tor −prime submodule of M . 
Furthermore, in the next theorem we conduct that the converse of Theorem 20 is also hold.

Theorem 2.21: Suppose that N N1 2×  is a Tor −prime submodule of M . Then one of the Ni’s must be 
Tor −prime submodule of Mi .

Proof. Let N N1 2×  be a Tor −prime submodule of M . If N M1 1=  and N M2 2= , then we have 
N N M1 2 =×  which is impossible. Then N M1 1≠  or N M2 2≠ . If N2 is Tor −prime, then we are done, 
if not, suppose that N M1 1≠  and rm N1 1 1∈ , so ( )rm N N1 1 1 2,0 � �  and since N N1 2×  is a Tor −prime 
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submodule in M , then ( )m N N1 1 2,0 � �  or ( ) ( ) ( )r Tor M Tor M N N1 1 2 1 2,0 � � � . This implies that m N1 1∈  
or rTor M N1 1 1( ) ⊆ . Hence N1  is a Tor −prime submodule of M1 .

From above theorem, we conclude that if N N1 2×  is a strongly Tor −prime (res. Tor −semiprime or 
strongly Tor −semiprime) submodule of M . Then one of the Ni  ’s must be strongly Tor −prime (res. 
Tor −semiprime or strongly Tor −semiprime) submodule of Mi . Finally, if M M M Mn= 1 2× × ×…  is 
an R-module, where R R R Rn= 1 2× × ×… . Such that M  is Tor −prime module, then Mi  is Tor −prime 
Ri -module, for all i =1,2.

Example 2.22: Suppose that M M M Mn= 1 2× × ×…  is an R-module, where R R R= 1 2× ×  …×Rn . Such 
that Ri  is integral domain for some i . Then Tor M M Mn( )1 2× × ×…  is a strongly Tor −prime (res. Tor −
semiprime or strongly Tor −  semiprime) submodule of M .

Conclusion

In this paper, we introduced the concepts Tor −prime and strongly Tor −  prime submodule as gener-
alization of prime and strongly prime submodule. We investigate some characterizations and equiva-
lent conditions of the described concepts. If M  is a nonzero R-module. Then M  is Tor −  prime module 
if and only if Ann N Ann Tor M( ) = ( ( )), for every nonzero submodule N  of M . Let M M

i
n

i=
=1⊕ . Then 

Mi  is a Tor −prime submodule of M  if and only if Mi  is a Tor −prime module, for each i n=1,2, ,… . 
Every prime (resp. strongly prime) submodule is Tor −  prime (resp. Tor −  strongly prime) submodule. 
But the converse need not be true in general, see Example 2. Suppose that M  is a torsion module, 
then every Tor −prime submodule is prime submodule. This means that for a torsion module, Tor −  
prime property is a necessary and sufficient condition for a prime submodule. Suppose that M  is a 
finitely generated R-module. The new concepts Tor −  prime and strongly Tor −  prime submodules are 
essential in module theory. Because, they have new properties by which we can define and investigate 
new structures in module theory. For instance, the reader can investigate the impact of these concepts 
on different types of modules such as, multiplication, projective and injective modules.
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