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Abstract
The major structure of this present article is to establish and analyze the spaces involving the infinite 
matrices with the operator introduced by Kizmaz. β -duals will be constructed. BK spaces will be 
given its place for synthesis.
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1. Introduction

Considering the sequences of set of real or complex numbers as ω  and where else �∞  c  and c0 be 
assumed as the linear spaces of the form bounded, convergent, and null sequences of complex terms 
[1–8]. H. Kizmaz [9], first introduced the difference sequence space and defined sequence spaces as

� �� �� � �

� � �

( ) = { = ( ) : }
( ) = { = ( ) : }

v v v
c v v v c

i

i

and

c v v v ci0 0( ) = { = ( ) : }.� � �
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where � � � �v v v vi i i= = ( )1 . As in [1], [10], [11], [12], [14]–[19], we define κB  to be an infinite matrix B  
in the space κ  as

� � �B iv v Bv= { = ( ) : }.� �

Definition 1.1: Let the space Λ  having linear topology be assumed as Kothe space if Pm = � �C is 
continuous for P y y y ym m m( ) = = ( )� ��  for each m∈.

Definition 1.2: Let us consider a complete linear space as Frechet space. Also, the K -space Λ  is known 
as FK -space if Λ  will be a complete linear metric space. Therefore, A normed FK -space will be known 
as BK -space.

Definition 1.3: For non-negative entries b kn , the matrix B bnk= ( ) is said be be Kothe matrix if

 (i) For each m∈N if ∃ a natural number j  such that bmj > 0  and
 (ii) b b m jmj mj� � ��1 , .N

Definition 1.4: Assuming Λ  to be any one of the sequence spaces �∞ , �1, c  or c0 . Then, � �( )  comprise 
of the sequences

s s s s rr r= ( )  ( 1))� � � �( �

is difference sequences spaces. Also in [13], the difference sequence space ∆m  is given as follows:

� �m
r

ms s s� � �= = ( ) : ,{ }� �

where �1
1= ( )s s sr r� �  and � � �m ms s= ( )1�  for m∈ {1,2,3, }.�

Theorem 1.1: As in [9], the space �� ( )�  is considered as a Banach space under norm

   s s s� �=| | .1 � �

Corollary 1.2: Also the space c( )∆  and c0( )∆  are assumed to be Banach spaces [4].

2. Köthe matrix using ∆ -approach

Throughout the article �� ( , )�g B , �1( , )∆g B , � p g B( , )∆ , c Bg0( , )∆  and c Bg0( , )∆  are assumed as the 
class of bounded, summable, p-summable, null and convergent sequences spaces, where B bnk= ( ) be 
a Köthe matrix [1].

Now for g gk= ( )  with gk ≠ 0  for all k∈N , we define the following new spaces as:
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Lemma 2.1: Let the function  � ( , )� B  be defined as

   x g v b v bk g n nk� �=| |1 1 1 � �

be the norm on �� ( , ),�g B  where B  is assumed to be a Köthe Matrix.

Theorem 2.2: The set �� ( , )�g B  is a vector space of ω.

Proof: Suppose v vn= ( )  and s s n= )(  are elements of �� ( , ),�g B  such that

   v b v and s b v
n

nk g nk g� �� �= | |<     =| |< .sup � �

Now for the scalars a b, , we have

 av bs b av bs

b av bs
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n
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�

|

| | | |

< .

sup sup

So, this shows that av bs Bg� � �� ( , )� . Consequently, �� ( , )�g B  is be a vector space of ω.

Theorem 2.3: The sets �1( , )∆g B , � p g B( , )∆ , c Bg( , )∆  and c Bg0( , )∆  are linear spaces of ω.

Proof: The result could be analogously and henceforth eliminated.

Theorem 2.4: The sets �1( , )∆g B , � p g B( , )∆ , c Bg( , ),∆  c Bg0( , )∆  and �� ( , )�g B  are normed spaces under

   v g v b v bB k g n nk( , ) 1 1 1=| | .� �� �

Proof: We only prove the result for �� ( , )�g B  and the rest could be demonstrated in the similar way. 
Also, the properties of norm for the function  v B( , )∆  are as follows:

( )      =| |
=| | {|

( , ) 1 1 1

1 1 1

i v g v b v b
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This implies that
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But g b k1 1, 0≠ , therefore, v1 = 0  and | |= 0.∆g n nkv b
Also, g b v v v vk nk n n n n, 0 = 0 = .1 1� � � �� �  Also, v1 = 0 , it follows that
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Therefore, we have
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This shows that
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Hence, �� ( , )�g B  is a normed linear space.

Theorem 2.5: Assume b kn k, � � �R  for each n k, .∈N  Then, the spaces �� ( , )�g B , �1( , )∆g B , � p g B( , )∆ , 
c Bg( , )∆  and c Bg0( , )∆  are K -spaces.
Proof: We only prove the result for �� ( , )�g B  and the rest could be demonstrated in the similar way.

Let v v Bn g= ( ) ( , )� �� �  and let �� ( , )�g B  be considered as sequence space with linear topology.
Define P Bn g: ( , )�� �� C by P v vn g n( ) = .∆

Now we show that Pn  is continuous, for this we will show that Pn  is bounded.
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Hence, P vn( )  is bounded and continuous. Therefore, �� ( , )�g B  is a K -space.
We now state the following result without proof.

Theorem 2.6: The sets �� ( , )�g B , �1( , )∆g B , � p g B( , )∆ , c Bg( , )∆  and c Bg0( , )∆  are Banach spaces.

Theorem 2.7: The sets �� ( , )�g B , �1( , )∆g B , � p g B( , )∆ , c Bg( , )∆  and c Bg0( , )∆  are F  spaces.

Proof: We only prove the result for �� ( , )�g B  and the rest could be demonstrated in the similar way.
As �� ( , )�g B  is considered to have a linear topology, hence it would be linear. It is earlier shown 

that �� ( , )�g B  is assumed as normed linear space and also complete. It is known that all normed 
linear space is metric space. Hence, �� ( , )�g B  is a complete linear space. Consequently, �� ( , )�g B  is 
a F -space.

Corollary 2.8: �� ( , )�g B  will be an FK -space if �� ( , )�g B  is assumed to be K -space and complete 
linear metric space.

Corollary 2.9: The spaces �1( , )∆g B , � p g B( , )∆ , c Bg( , )∆  and c Bg0( , )∆  are FK -space.

Theorem 2.10: The spaces �� ( , )�g B , �1( , )∆g B , � p g B( , )∆ , c Bg( , )∆  and c Bg0( , )∆  are BK  spaces.

Proof: As the spaces are considered as FK-spaces and their topology is assumed to Normable. Then 
they are known as BK-spaces.

Definition 2.1: Let �bs g B( , )∆  be bounded series in the difference and Köthe matrix be as follows:
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It can be proven that the space �bs g B( , )∆  is an FK-space and also BK -space considering the norm 
|| ||� �

bs  given as

|| || = | | .
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Theorem 2.11: Let us assume that 1 <� �p , then

 (i) � � �1( , ) ( , ) ( , )� � �g bs g gB B B� � � .
 (ii) Let { }bnk n p∈ ∈N �  for each k∈N , then � �� �( , ) ( , )� �g p gB B .

Proof: (i) To prove � �1( , ) ( , )� �g bs gB B� , let v Bg� �1( , ),�  then for each k∈N , we have
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By the definition of �bs g B( , )∆ , we have

v B B Bbs g g bs g� � �� � �( , ) ( , ) ( , ).1� � � (3)
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Further, to prove � �bs g gB B( , ) ( , )� �� � , we let v Bbs g� � ( , ).�  Then, we have
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Therefore, we conclude that

v B B Bg bs g g� � �� �� � �( , ) ( , ) ( , ).� � � (4)

From Equation (3) and (4), we get
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