Results in Nonlinear Analysis 6 (2023) No. 3, 90–96 https://doi.org/10.31838/rna/2023.06.03.013 Available online at www.nonlinear-analysis.com

Structural approach of infinite matrix using difference operator

Dowlath Fathima

Basic Science Department, College of Science and Theoretical Studies, Saudi Electronic University, Riyadh 11673, Saudi Arabia

Abstract

The major structure of this present article is to establish and analyze the spaces involving the infinite matrices with the operator introduced by Kizmaz. β -duals will be constructed. BK spaces will be given its place for synthesis.

Mathematical Subject Classification (2010): 46B45; 46A45; 46B99. *Key words:* Sequence spaces; β-duals; Kizmaz operator

1. Introduction

Considering the sequences of set of real or complex numbers as ω and where else ℓ_{∞} c and c_0 be assumed as the linear spaces of the form bounded, convergent, and null sequences of complex terms [1–8]. H. Kizmaz [9], first introduced the difference sequence space and defined sequence spaces as

$$
\ell_{\infty}(\Delta) = \{v = (v_i) : \Delta v \in \ell_{\infty}\}\
$$

$$
c(\Delta) = \{v = (v_i) : \Delta v \in c\}
$$

and

$$
c_0(\Delta) = \{v = (v_i) : \Delta v \in c_0\}.
$$

Received July 12, 2023; Accepted August 26, 2023; Online September 8, 2023

Email addresses: d.fathima@seu.edu.sa (Dowlath Fathima)

where $\Delta v = \Delta v_i = (v_i - v_{i-1})$. As in [1], [10], [11], [12], [14]–[19], we define κ_B to be an infinite matrix *B* in the space κ as

$$
\kappa_B = \{v = (v_i) \in \omega : Bv \in \kappa\}.
$$

Definition 1.1: Let the space Λ having linear topology be assumed as Kothe space if $P_m = \Lambda \rightarrow \mathbb{C}$ is *continuous for* $P_m(y) = y_m \forall y = (y_m) \in \Lambda$ *for each m* $\in \mathbb{N}$.

Definition 1.2: *Let us consider a complete linear space as Frechet space. Also, the K -space* Λ *is known as FK -space if* Λ *will be a complete linear metric space. Therefore, A normed FK -space will be known as BK -space.*

Definition 1.3: For non-negative entries $b_n k$, the matrix $B = (b_{nk})$ is said be be Kothe matrix if

(i) For each $m ∈ \mathbb{N}$ if \exists a natural number *j* such that $b_{mi} > 0$ and

(ii) $b_{mj} \leq b_{mj+1} \ \forall m, j \in \mathbb{N}$.

Definition 1.4: Assuming Λ to be any one of the sequence spaces ℓ_{∞} , ℓ_1 , c or c_0 . Then, $\Lambda(\Delta)$ comprise *of the sequences*

$$
s = (s_r) \exists (s_r - s(r+1)) \in \Lambda
$$

is difference sequences spaces. Also in [13], the difference sequence space ∆*^m* is given as follows:

$$
\Delta^m \lambda = \{ s = (s_r) \in \omega : \Delta^m s \in \lambda \},\
$$

where $\Delta^1 s = (s_r - s_{r+1})$ and $\Delta^m s = \Delta(\Delta^{m-1} s)$ for $m \in \{1, 2, 3, \cdots\}$.

Theorem 1.1: As in [9]*, the space* $\ell_{\infty}(\Delta)$ is considered as a Banach space under norm

$$
\|s\|_{\Delta} = |s_1| + \|\Delta s\|_{\infty}.
$$

Corollary 1.2: *Also the space* $c(\Delta)$ *and* $c_0(\Delta)$ *are assumed to be Banach spaces [4].*

2. Köthe matrix using ∆**-approach**

Throughout the article $\ell_{\infty}(\Delta_g, B)$, $\ell_1(\Delta_g, B)$, $\ell_p(\Delta_g, B)$, $c_0(\Delta_g, B)$ and $c_0(\Delta_g, B)$ are assumed as the class of bounded, summable, p -summable, null and convergent sequences spaces, where $B = (b_{nk})$ be a Köthe matrix [1].

Now for $g = (g_k)$ with $g_k \neq 0$ for all $k \in \mathbb{N}$, we define the following new spaces as:

$$
\ell_1(\Delta_g, B) = \left\{ v = (v_n) \in \omega : \sum_{n=1}^{\infty} \left| \Delta_g v_n b_{nk} \right| < \infty \right\},\
$$
\n
$$
\ell_p(\Delta_g, B) = \left\{ v = (v_n) \in \omega : \left(\sum_{n=1}^{\infty} \left| \Delta_g v_n b_{nk} \right|^p \right)^{\frac{1}{p}} < \infty \right\},\
$$
\n
$$
c(\Delta_g, B) = \left\{ v = (v_n) \in \omega : \lim_{n \to \infty} (b_{nk} \Delta_g v_n - l) = 0 \right\},\
$$
\n
$$
c_0(\Delta_g, B) = \left\{ v = (v_n) \in \omega : \lim_{n \to \infty} \Delta_g v_n b_{nk} = 0 \right\},\
$$
\n
$$
\ell_\infty(\Delta_g, B) = \left\{ v = (v_n) \in \omega : \lim_{n \to \infty} \left| \Delta_g v_n b_{nk} \right| < \infty \right\}.
$$

Lemma 2.1: Let the function $\|\cdot\|_{(A,B)}$ be defined as

$$
\|x\|_{\Delta} = \|g_1 v_1 b_{1k}\| + \|\Delta_g v_n b_{nk}\|_{\infty}
$$

be the norm on $\ell_{\infty}(\Delta_{g}, B)$, where *B* is assumed to be a Köthe Matrix.

Theorem 2.2: *The set* $\ell_{\infty}(\Delta_{\varrho}, B)$ *is a vector space of* ω *.*

Proof: Suppose $v = (v_n)$ and $s = s_(n)$ are elements of $\ell_{\infty}(\Delta_g, B)$, such that

$$
||v||_{\infty} = \sup_{n} |b_{nk} \Delta_g v| < \infty \ and \ ||s||_{\infty} = |b_{nk} \Delta_g v| < \infty.
$$

Now for the scalars a, b , we have

$$
|| av + bs|| = \sup_{n} |b_{nk} \Delta_g (av_n + bs_n)|
$$

\n
$$
= \sup_{n} |b_{nk} (\Delta_g av_n + \Delta_g bs_n)|
$$

\n
$$
= \sup_{n} |b_{nk} \Delta_g av_n + b_{nk} \Delta_g bs_n|
$$

\n
$$
\leq \alpha \sup_{n} |b_{nk} \Delta_g v_n| + b \sup_{n} |b_{nk} \Delta_g s_n|
$$

\n
$$
< \infty.
$$

So, this shows that $av + bs \in \ell_{\infty}(\Delta_g, B)$. Consequently, $\ell_{\infty}(\Delta_g, B)$ is be a vector space of ω .

Theorem 2.3: *The sets* $\ell_1(\Delta_g, B)$ *,* $\ell_p(\Delta_g, B)$ *,* $c(\Delta_g, B)$ and $c_0(\Delta_g, B)$ are linear spaces of ω .

Proof: The result could be analogously and henceforth eliminated.

Theorem 2.4: The sets $\ell_1(\Delta_g, B)$, $\ell_p(\Delta_g, B)$, $c(\Delta_g, B)$, $c_0(\Delta_g, B)$ and $\ell_\infty(\Delta_g, B)$ are normed spaces under $||v||_{(AB)} = |g_1v_1b_{1k}| + ||\Delta_g v_nb_{nk}||_{\infty}.$

Proof: We only prove the result for $\ell_{\infty}(\Delta_g, B)$ and the rest could be demonstrated in the similar way. Also, the properties of norm for the function $||v||_{(\Delta,B)}$ are as follows:

(i)
$$
||v||_{(\Delta,B)} = |g_1v_1b_{1k}| + ||\Delta_g v_n b_{nk}||_{\infty}
$$

\n $= |g_1v_1b_{1k}| + \sup_{n} { |g_n v_n b_{nk} | }$
\n $\ge 0.$
\n(ii) $||v||_{(\Delta,B)} = 0 \Leftarrow (|g_1v_1b_{1k}| + ||\Delta_g v_n b_{nk}||_{\infty}) = 0.$

This implies that

$$
|g_1v_1b_{1k}| = 0 \text{ and } ||\Delta_g v_n b_{nk}||_{\infty} = 0
$$

\n
$$
\Rightarrow g_1v_1b_{1k} = 0 \text{ and } \sup_n |\Delta_g v_n b_{nk}| = 0
$$

But $g_1, b_{1k} \neq 0$, therefore, $v_1 = 0$ and $\Delta_g v_n b_{nk} = 0$.

Also, g_k , $b_{nk} \neq 0 \Rightarrow v_n - v_{n+1} = 0 \Rightarrow v_n = v_{n+1}$. Also, $v_1 = 0$, it follows that

$$
v_n = 0 \forall n \in \mathbf{N}.
$$

Therefore, we have

$$
||v||_{(\Delta,B)} = 0 \Leftrightarrow v = 0.
$$

\n(*iii*)
$$
||\alpha v||_{(\Delta,B)} = |\alpha g_1 v_1 b_{1k}| + ||\alpha \Delta_g v_n b_{nk}||_{\infty}
$$

$$
= |\alpha| |g_1 v_1 b_{1k}| + \sup_{n} {|\alpha g_n v_n b_{nk}|}
$$

$$
= |\alpha| |g_1 v_1 b_{1k}| + \sup_{n} {|\alpha| |g_n v_n b_{nk}|}
$$

$$
= |\alpha| |g_1 v_1 b_{1k}| + |\alpha| |\sup_{n} {|g_n v_n b_{nk}|}
$$

$$
= |\alpha| [|g_1 v_1 b_{1k}| + \sup_{n} {|g_n v_n b_{nk}|}]
$$

$$
= |\alpha| ||v||_{(\Delta,B)}.
$$
 (1)

This shows that

$$
\| \alpha v \|_{(\Delta,B)} = \alpha \| v \|_{(\Delta,B)}.
$$

\n
$$
(iv) \quad \| u + v \|_{(\Delta,B)} = (u_1 g_1 + v_1 g_1) b_{1k} + \| \Delta_g (u_n + v_n) b_{nk} \|_{\infty}
$$

\n
$$
= |g_1 u_1 b_{1k} + g_1 v_1 b_{1k} + \sup_n \{ |\Delta_g (u_n + v_n) b_{nk} | \}
$$

\n
$$
\leq |g_1 u_1 b_{1k} + |g_1 v_1 b_{1k} + \sup_n \{ |\Delta_g u_n b_{nk} | \} + \sup_n \{ |\Delta_g v_n b_{nk} | \}
$$

\n
$$
= [|g_1 u_1 b_{1k} | + \sup_n \{ |\Delta_g u_n b_{nk} | \}] + [|g_1 v_1 b_{1k} | + \sup_n \{ |\Delta_g v_n b_{nk} | \}]
$$

\n
$$
\Rightarrow \| u + v \|_{(\Delta,B)} \leq \| u \|_{(\Delta,B)} + \| u + v \|_{(\Delta,B)}.
$$

Hence, $\ell_{\infty}(\Delta_{g}, B)$ is a normed linear space.

Theorem 2.5: Assume $b_{n,k} \ge k \in \mathbb{R}^+$ for each $n, k \in \mathbb{N}$. Then, the spaces $\ell_{\infty}(\Delta_g, B)$, $\ell_1(\Delta_g, B)$, $\ell_p(\Delta_g, B)$, $c(\Delta_g, B)$ and $c_0(\Delta_g, B)$ are *K -spaces.*

Proof: We only prove the result for $\ell_{\infty}(\Delta_{g}, B)$ and the rest could be demonstrated in the similar way. Let $v = (v_n) \in \ell_\infty(\Delta_g, B)$ and let $\ell_\infty(\Delta_g, B)$ be considered as sequence space with linear topology. Define $P_n: \ell_\infty(\Delta_g, B) \to \mathbb{C}$ by $P_n(v) = \Delta_g v_n$.

Now we show that P_n is continuous, for this we will show that P_n is bounded.

$$
|P_n(v) = |\Delta_g v_n| = 1 \cdot |\Delta_g v_n|.
$$

But $b_{n,k} \geq \beta$ implies that $1 \leq \left(\frac{1}{\beta}\right)$ \setminus $\left(\frac{1}{\rho}\right)$ $\frac{1}{\beta}\Big|b_{nk}$. Therefore, we have

$$
|P_n(v)| \le \left(\frac{1}{\beta}\right) b_{nk} |\Delta_g v_n| \tag{2}
$$

$$
\begin{aligned}\n&= \left(\frac{1}{\beta}\right) |b_{nk}| |\Delta_g v_n| \ (since \ b_{nk} > 0) \\
&= \left(\frac{1}{\beta}\right) |b_{nk} \Delta_g v_n| \\
&= \left(\frac{1}{\beta}\right) \{ |b_{1k} v_1| + \sup_n |b_{nk} \Delta_g v_n| \} \\
&= \left(\frac{1}{\beta}\right) \{ |b_{1k} v_1| + ||b_{nk} \Delta_g v_n||\} = \left(\frac{1}{\beta}\right) ||v||_{(\Delta, B)} .\n\end{aligned}
$$

Hence, $P_n(v)$ is bounded and continuous. Therefore, $\ell_\infty(\Delta_g, B)$ is a K-space.

We now state the following result without proof.

Theorem 2.6: The sets $\ell_{\infty}(\Delta_g, B)$, $\ell_1(\Delta_g, B)$, $\ell_n(\Delta_g, B)$, $c(\Delta_g, B)$ and $c_0(\Delta_g, B)$ are Banach spaces. **Theorem 2.7:** The sets $\ell_{\infty}(\Delta_g, B)$, $\ell_1(\Delta_g, B)$, $\ell_p(\Delta_g, B)$, $c(\Delta_g, B)$ and $c_0(\Delta_g, B)$ are F spaces.

Proof: We only prove the result for $\ell_{\infty}(\Delta_{g}, B)$ and the rest could be demonstrated in the similar way.

As $\ell_{\infty}(\Delta_g, B)$ is considered to have a linear topology, hence it would be linear. It is earlier shown that $\ell_{\infty}(\Delta_{\sigma}, B)$ is assumed as normed linear space and also complete. It is known that all normed linear space is metric space. Hence, $\ell_{\infty}(\Delta_g, B)$ is a complete linear space. Consequently, $\ell_{\infty}(\Delta_g, B)$ is a *F* -space.

Corollary 2.8: $\ell_{\infty}(\Delta_g, B)$ will be an FK-space if $\ell_{\infty}(\Delta_g, B)$ is assumed to be K-space and complete *linear metric space.*

Corollary 2.9: *The spaces* $\ell_1(\Delta_g, B)$ *,* $\ell_p(\Delta_g, B)$ *,* $c(\Delta_g, B)$ *and* $c_0(\Delta_g, B)$ *are FK -space.*

Theorem 2.10: The spaces $\ell_{\infty}(\Delta_g, B)$, $\ell_1(\Delta_g, B)$, $\ell_p(\Delta_g, B)$, $c(\Delta_g, B)$ and $c_0(\Delta_g, B)$ are BK spaces.

Proof: As the spaces are considered as FK-spaces and their topology is assumed to Normable. Then they are known as BK-spaces.

Definition 2.1: Let $\ell_{bs}(\Delta_g, B)$ be bounded series in the difference and Köthe matrix be as follows:

$$
\ell_{bs}(\Delta_g, B) = \left\{ v = (v_n) \in \omega : ||v||_{\kappa}^{bs} = \sup_{m \in \mathbb{N}} |\sum_{n=0}^{m} \Delta_g v_n b_{nk}| < \infty \text{ for each } k \in \mathbb{N} \right\}
$$

It can be proven that the space $\ell_{bs}(\Delta_g, B)$ is an FK-space and also *BK*-space considering the norm $||\cdot||^{bs}_{\kappa}$ given as

$$
||v||_{\kappa}^{bs} = \sup_{m \in \mathbb{N}} |\sum_{n=0}^{m} \Delta_{g} v_{n} b_{nk} || \forall k \in \mathbb{N}.
$$

Theorem 2.11: Let us assume that $1 \leq p \leq \infty$, then

- (i) $\ell_1(\Delta_\sigma, B) \subset \ell_{bs}(\Delta_\sigma, B) \subset \ell_\infty(\Delta_\sigma, B)$.
- (ii) Let ${b_{nk}}_{n\in\mathbb{N}} \in \ell_p$ for each $k \in \mathbb{N}$, then $\ell_\infty(\Delta_g, B) \subset \ell_p(\Delta_g, B)$.

Proof: (i) To prove $\ell_1(\Delta_g, B) \subset \ell_{bs}(\Delta_g, B)$, let $v \in \ell_1(\Delta_g, B)$, then for each $k \in \mathbb{N}$, we have

$$
\sum_n |\Delta_g v_n b_{nk}| < \infty.
$$

But

$$
\left|\sum_{n=0}^m \Delta_g v_n b_{nk}\right| \leq \sum_{n=0}^m |\Delta_g v_n b_{nk}| < \infty.
$$

Now consider supremum over $m \in \mathbb{N}$, we have

$$
\sup_{m\in\mathbf{N}}|\sum_{n=0}^m\Delta_g v_n b_{nk}|<\infty.
$$

By the definition of $\ell_{bs}(\Delta_g, B)$, we have

$$
v \in \ell_{bs}(\Delta_g, B) \Rightarrow \ell_1(\Delta_g, B) \subset \ell_{bs}(\Delta_g, B). \tag{3}
$$

Further, to prove $\ell_{bs}(\Delta_g, B) \subset \ell_{\infty}(\Delta_g, B)$, we let $v \in \ell_{bs}(\Delta_g, B)$. Then, we have

$$
| |v| |_{\kappa}^{bs} = \left\{ \sup_{m \in \mathbb{N}} |\sum_{n=0}^{m} \Delta_{g} v_{n} b_{nk}| < \infty \text{ for each } k \in \mathbb{N} \right\}
$$

$$
= |\sum_{n=0}^{m} \Delta_{g} v_{n} b_{nk}| < \infty.
$$

Let $L \in \mathbf{R}^+$ such that $|\sum_{\beta} \Delta_{\beta} v_n b_{nk}|$ *n*=0 $\sum_{i=1}^{m} \Delta_{g} v_{n} b_{nk} \leq L$ for each $k \in \mathbf{N}$, then

$$
|\Delta_g v_m bmk| = |\sum_{n=0}^m \Delta_g v_n b_{nk} - \sum_{n=0}^{m-1} \Delta_g v_n b_{nk}|
$$

\n
$$
\leq |\sum_{n=0}^m \Delta_g v_n b_{nk}| + |\sum_{n=0}^{m-1} \Delta_g v_n b_{nk}|
$$

\n
$$
< L + L = 2L.
$$

Considering least upper bound over $m \in \mathbb{N}$, we get $\sup_{n \in \mathbb{N}} |\Delta_g v_m b_{mk}| < \infty$
Therefore we conclude that **N** $\sup|\Delta_{\varrho} v_m b_{mk}| < \infty.$ Therefore, we conclude that

$$
\upsilon \in \ell_{\infty}(\Delta_g, B) \Rightarrow \ell_{bs}(\Delta_g, B) \subset \ell_{\infty}(\Delta_g, B). \tag{4}
$$

From Equation (3) and (4), we get

$$
\ell_1(\Delta_g, B) \subset \ell_{bs}(\Delta_g, B) \subset \ell_{\infty}(\Delta_g, B).
$$

(ii) Let ${ \{b_{nk}\} }_{n\in\mathbf{N}} \in \ell_p$ for some $k\in\mathbf{N}.$ Also, suppose that $v=(v_n)\in \ell_\infty(\Delta_g)$, then

$$
\|v\|_{\infty} = \left\{\sum_{n=1}^{\infty} |\Delta_g v_n|^p\right\}^{\frac{1}{p}} < \infty.
$$

Since ${b_{nk}}_{n \in \mathbb{N}} \in \ell_p$, this yields that

$$
\left(\sum_{n=1}^{\infty} |b_{nk}|^p\right)^{\frac{1}{p}} < \infty.
$$

Now,

$$
\sum_{n=1}^{\infty} |\Delta_g v_n b_{nk}|^p = \sum_{n=1}^{\infty} |\Delta_g v_n|^p |b_{nk}|^p
$$

$$
= \sum_{n=1}^{\infty} |\Delta_g v_n|^p \sum_{n=1}^{\infty} |b_{nk}|^p
$$

$$
= ||v||_{\infty}^p \sum_{n=1}^{\infty} |b_{nk}|^p
$$

$$
< \infty.
$$

Therefore, $\left(\sum_{n=1}^{\infty} |b_{nk}|^p\right)^p$ $\left(\sum_{n=1}^{\infty} |b_{nk}|^p\right)^{\frac{1}{p}} < \infty$. Consequently, we have $\ell_{\infty}(\Delta_g, B) \subset \ell_p(\Delta_g, B)$.

Acknowledgement

We are thankful to the reviewers of their valuable suggestions that improved the presentation of the paper.

References

- [1] Kothe, G., *Topological vector spaces* (Springer-Verlag, New York), (1969).
- [2] Mursaleen, M., *Applied summability methods*, Springer Cham, Heidelberg, (2014).
- [3] Ganie, A. H., Sheikh, N. A., *On the sequence space l(p, s) and some matrix transformations*, Nonlinear Functional Analysis and Applications, 18 (2), (2013), 253–258.
- [4] Ganie, A. H., Lone, S. A., Akhter, A., *Generalised Cesaro difference sequence space of non-absolute type*, EKSAKTA, 1 (2), (2020), 147–153.
- [5] Ray, S, *Difference sequence spaces and matrix methods*, J. Science Engg. & Tech. 10 (1), (2014),73–78.
- [6] Maddox, I. J., *Infinite matrices of operators*, Lecture Notes in Math., Infinite matrices of operators, Berlin-Heidelberg-New York: Springer-Verlag, (1980).
- [7] Albaidani, M. M., Srivastava, H. M., Ganie, A. H., *Notion of non-absolute family of spaces*, Int. J. Nonlinear Anal. Appl. 14 (1), (2023), 345–354.
- [8] Albaidani, M. M., Ganie, A. H., *New Type of Paranormed Behaviour of Spaces*, Journal of Applied Mathematics and Computation, 5 (4), 2021, 273–276.
- [9] Kizmaz, H., *On certain sequence spaces*, Canad. Math. Bull 24 (2), (1981), 169–176.
- [10] Robinson, A., *On Functional Transformation and Summability* (Proc. Springer Cham Heidelberg).
- [11] Ganie, A. H., *Generalized difference sequence spaces*, Adv. Stud. Contemp. Math. (Kyungshang), 30 (2), (2020), 197–206.
- [12] Tripathy, B. C., *A New type of difference sequence spaces*, International Journal of Science & Technology, 1(1), (2006), 11–14.
- [13] Colac, R., Et, M., *On Koothe duals of generalized difference sequence spaces*, Soochow J. Math, 21 (4), (1995), 377–386.
- [14] Šalát, T., Tripathy, B. C., Ziman, M., *On some properties of I-convergence*. Tatra Mt. Math. Publ., 28 (2), (2004), 279–286.
- [15] Ganie, A. H., Fathima, D., *On some new scenario of* ∆*-spaces*, J. Nonlinear Sci. Appl., 14, (2021), 163–167.
- [16] Fathima, D. Albaidani, M. M., Ganie, A. H., Akhter, A., *New structure of Fibonacci numbers using concept of* ∆*-operator*, Journal of Mathematics and Computer Science, 26(2), (2022), 101–112.
- [17] Ganie, A. H., Mobin, A., Sheikh, N. A., Jalal, T., *New type of Riesz sequence space of non-absolute type*, J. Appl. Comput. Math., 5 (1), (2016), 1–4.
- [18] Sheikh, N. A., Ganie, A. H., *A new type of sequence space of non-absolute type and matrix transformation*, WSEAS Transaction of Math., 8 (12), (2013), 852–859.
- [19] Sheikh, N. A., Jalal T., Ganie, A. H., *New type of sequence spaces of non-absolute type and some matrix transformations*, Acta Mathematica Academiae Paedagogicae Nyregyháziensis, 29, (2013), 51–66.