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1. Introduction

Over the past few decades, the theme of fractional calculus (FRC) has been widely, studied principally 
due to its significant implementations in mathematics and other fields related to it. Specifically, anal-
ysis (complex and mathematical) considerably evolved from FRC, which includes the incipient notions 
and analysis’ techniques [12], [13]. The foundations of the FRC theme were posed by Leibnitz in 1695. 
Its main concern is to study the extension of order derivatives and integrals to fractional derivatives 
and fractional integrals.
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FRC has recently attracted the concern of the analytical community to the geometric complex func-
tion theory (GCFT). This great interest is due to its use as a valuable tool in researching a variety of 
operators with successful implementations in GCFT. In reality, Srivastava and Owa have introduced 
lots of contributions to developing on the theory FRC in the complex unit disk, such as [18], [21], and [22].  
Since then, many authors have provided to this area. For instance, Amsheri and Zharkova [3], Farzana 
et al [8], Ghanim and Al-Janaby [9], [10], [11].

Let � = { :| |<1}z z�C  indicate the unit disc in C  “complex plane”. The class of all regular functions 
in ∆  is denoted by E( )∆ . Consider ��  the subclass of E( )∆  that includes normalized regular functions 
f of the formulas:

f z z a z z( ) = , ( ).
=2

� �
�

�
�

�
� � (1)

Besides, let ��  identify the subclass of ��  involving univalent functions. Denote by CV  and S*  con-
secutively the subclasses of ��  involving starlike and convex functions. Functions f ∈CV  map ∆  onto 
convex domain, while f ∈S*  whenever f ( )∆  starlike domains with respect to the origin. Analytically, 
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. Moreover, for 0 <1� � , we denote the sub-

classes of ��  consisting of convex functions and starlike functions of order ε  by CVε  and Sε
* , consec-

utively. These geometric subclasses achieve the following series of proper inclusions: C SV
� �� �* ��. 

Moreover, they are regularly acquainted by
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,f zf z
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and

S� �* = : < ( )
( )

.f zf z
f z

� �
��

�
�

�

�
�

�
�
�

�
�
�

�� (3)

Obviously, for ε = 0 , then CVε  and Sε
*  coincide with CV  and S* , sequentially, [14]. The significant con-

nection between the subclasses CVε  and Sε
* , called “Alexander-sort”, which achieves f �CV�  if and only 

if zf ��S�
* , [1]. The function f is obtained from g as follows:

f z g z g d g z d
z

( ) = = = ,
0 0

1

= [ ]( ) ( ) ( )
� �

�
�

�
t
t

t (4)

where = [ ]g  is called the Alexander transform of g�L� . Therefore, g�S�
* if and only if = [ ]g �CV� . 

Since the function g z z a z( ) =
=2

�
�

�
�

�
�  is transformed by = to = [ ]( )g z z a z= ,

=2
�

�

�
�

�

�

�
 it is expected that 

the function = [ ]g  is closer to similarities than g, see [2] and [6].
Interesting investigations continued into certain subclasses of �� . This includes the class L∆  con-

sisting of locally univalent functions in ∆ , namely,

L� �� �= : ( ) 0,f f z z� � � �� � (5)

is a vector space over C  in the sense of the Hornich operations [15]. For f �L� , the term “pre-Schwar-
zian derivative” Pf z( ) is the logarithmic derivative of f and given by the following formula:

Pf z
f z
f z

( ) = ( )
( )
.′′

′ (6)
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Furthermore, the norm of Pf  is stated as:

Pf
z

z f z
f z

= 1 | | ( )
( )

,
||<1

2sup( )�
��
�

(7)

see [4]. The pre-Schwarzian derivative is important in the theory of Teichmüller spaces and has a 
number of implementations in the theory of locally univalent functions. This norm is widely utilized 
in the study of geometric features of such functions. Specifically, it can be utilized to acquire either 
necessary or suitable stipulations for the global univalence or to gain certain geometric stipulations 
on the range of the function. Also, it is well known that any univalent regular transformation in ∆  
achieves the sharp inequality | ( )| 6

1 | |2
Pf z z

�
�

, z�� . Further, in view of Becker’s univalence criterion,  

every regular function f in ∆  with Pf ≤1 is univalent in ∆ . Conversely Pf ≤ 6  is achieved if f is uni-
valent, [4]. Recently, several authors have analyzed and introduced the norm estimates for typical 
subclasses of univalent functions, [19] and [20].

The following theorem has salutary tools discussing the major outcomes:

Theorem 1.1. For f �L� ,

 1. If Pf ≤1, then f is univalent,

 2. If Pf ≤ 2, then f is bounded.
The constants are sharp
The first part is posed by Becker ([4], p. 36, corollary 4.1), while the sharpness of the constant 1 is 

due to Becker and Pommerenke [5]. The second part is offered by Kim and Sugawa. [16].

Theorem 1.2. For 0 <1� �  and f ��� , then

 1. If f �CV� , acquire Pf � �4(1 )� ,
 2. If f �S�

* , obtain Pf � �6 4� .
This theorem is attributed to Yamashita ([24], p. 219, Theorems 1 and 2).
On the other hand, the following fractional calculus (differential and integral) operators in the 

sense of Srivastava and Owa operators [22]: for function f, the fractional derivative of order α is given 
by

Dz
z

f z d
dz

f
z

d�
��

�
�

� �( ) = 1
(1 )

( )
( )

, 0 <1,
0� � �

�� (8)

where function f is regular in a simply connected region of C , including the origin, and the multiplic-
ity of ( )z � �� �  is extracted by demanding log( )z ��  to be real when 0 < ( )z �� . Whilst the fractional 
integral of order α is given by

=z
z

f z f z d� �

�
� � � �( ) = 1

( )
( )( ) , 0 < ,

0
1

� � � � (9)

where function f is regular in a simply connected region of C , including the origin, and the multiplicity 
of ( ) 1z � �� �  is removed by demanding log( )z ��  to be real when 0 < ( )z �� .

The following lemma gives analogous formulations to the above concepts of fractional operators:

Lemma 1.3. [22]

 1. Dz z z� � � ��
� �

= ( 1)
( 1)
�

�
�

� �
� , � �1 < , 0 <1� � ,
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 2. =z z z� � � ��
� �

= ( 1)
( 1)
�

�
�

� �
� , �1 < , 0 <� � .

In this paper, a new fractional integrodifferential operator is provided. Related to the pre-Schwar-
zian derivative, certain appropriate stipulations on the parameters included in this constructed oper-
ator to be univalent and bounded are considered and discussed.

2. Fractional Integrodifferential Operator Sµµ ( )z

This section presents, for f ��� , a new fractional integrodifferential (non-linear) operator based on 
fractional binomial expansion and fractional differential formal operator in the sense of Srivastava 
and Owa operators.

In terms of fractional binomial expansion, 0 <1� � , we consider a new fractional regular function 
for f ���  as:

�
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� �
� ��

� �
f z

z f z z z a z a a( ) = ( )
( 2)
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( 2)
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�
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�

�
�
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�

�
�

��

2

1

=2

...

=
( 2)

( )
( 2)

,
� �

(10)

where � �� ( ) is the coefficients depending on aκ  of f.
In view of the fractional differential formula in the sense of Srivastava and Owa operators given 

by Theorem 3, the new fractional function ϑf  (10) yields the following fractional differential operator:

D
D

Dz f
z

zz z z

z

�
� �

�

� � � �

�

�
�

�
� �
�

� �

( ) =
( 2)

( )
( 2)

= (

1

=2

=2

� �
�

�

�
�

�

�

�

�

� �

��
�

�
�

� �
� � ��

�)!
( 1)! !

( ) , 0 <1.z

(11)

Remark 2.1. Notice that

 1. Dz f z z0 ( ) =ϑ ,
 2. D0 (0) = 0� �f ,
 3. ( ) (0) =10D

��f � ,
 4. =z z f fz z� �� �D ( ) = ( ).

Then, we impose the following new modified classes of convex and starlike functions correlated 
with the fractional operator (11):

Let CV� �( )  denote the class of functions f ���  which achieve the condition

�
�

�

�

�< 1
( ) ( )
( ) ( )

,� �
��

�

�

�
�
�

�

�
�
�

z z
z

z f

z f

D

D
(12)

where 0 <1� � , 0 <1� �  and z�� . Clearly, Dz f z
�

�� ( )�CV .
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Also, let S� �*( ) be the class of functions f ���  achieving

�
�

�

�

�<
( ) ( )

( )
.�

��

�
�
�

�

�
�
�

z z
z

z f

z f

D

D
(13)

where 0 <1� � , 0 <1� �  and z�� . Clearly, Dz f z
�

�� ( ) *�S . Further, it is obvious that f �CV� �( )  if and 
only if zf ��S� �*( ).

Therefore, based on the study in [23] and the fractional operator given by (11), let’s introduce a 
fractional integrodifferential (non-linear) operator S�

�( ) :z � �� ��  as:

S D
D

�
�

�
�

�

��
�

��

�

� �
� �

�
�( ) = ( ) ( )

( )
,

0 =1
z d

z
z f

z

� � �� �
�
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�
�

�

�

�
�

�

(14)

where fι , �� ���, 0 ��� , �ι  for � �=1,2,...,  and � ��.

Remark 2.2. The non-linear operator Sµ ( )z  (14) serves as a new generalization for the following oper-
ators by means of various choices of the parameters involved.

 1. For �ι = 0 , where � �=1,..., , yields the operator

��
�

�
�

�

��� � �( ) = ( ) ( ) ,
0 =1

z d
z

z f� � �( )D (15)

 2. For �� = 0 , where � �=1,..., , gains the operator

��
�

� �
��

�� �

�
�( ) =

( )
,

0 =1
z d

z z
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�
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�

D
�

(16)

 3. For µ =1, η η1 = , � �1 =  and f f1 1= =σ , acquires the operator

�( ) = ( ) ( )
( )

,
0

z d
z

z f
z f� �� �

�
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�

�

�
�
�

D
D� �
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� �
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(17)

 4. For µ =1, η1 =1, �1 =1 and f f1 1= =σ , obtains the operator

�( ) = ( ) ( )
( )

.
0

z d
z

z f
z f� �� �

�

�
�
�

�

�
�
�

D
D�

�

� �
� �

�
� (18)

3. Univalence and boundedness of Sµµ ( )z

This section investigates certain appropriate stipulations for univalence and boundedness of new 
fractional integrodifferential operator Sµ ( )z  given by (14).

An implementation of Theorem 1.1 and 1.2 to the new fractional operator (14) acquires the follow-
ing major outcome.

Theorem 3.4. For 0 ��� , �ι , � �=1,2,..., , let fι , � �� ��
�S* ( ). If Sµ ( )z  is locally univalent in ∆  and 

achieves

�

�
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=1

3 2 2 1 1
2
,� �� � � �� ��� �� �� (19)
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then Sµ ( )z  is univalent. Further, if

�

�

� � � �� � �
=1

3 2 2 1 1,� �� � � �� ��� �� �� (20)

then Sµ ( )z  is bounded.

Proof. In light of (7) and (14), we acquire
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Since � �� ��
�S* ( ), this yields Dz z�

�� ��
� ( ) *�S . In view of the Alexander-sort relation, it follows that 

there is Dz
�

�� �� �CV , where � �� ��CV ( ) such that

D Dz zz z z�
��

�
��

� �( ) = ( ).( )� (22)

In addition, since f� ��
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� ( ) *�S . Therefore,
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= .
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By an application of Theorem 1.2, this gains

PS�
�

�

� � � �� � �� �� � � �� ��� ���2 3 2 2 1 .
=1

� (24)

From inequality (19), it leads to

PS� �1. (25)

Hence, by the first part of Theorem 1.1, Sµ ( )z  is univalent.
Furthermore, from condition (20), we deduce

PS� � 2. (26)

Thus, in view of the second part of Theorem 1 Sµ ( )z  is bounded.
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Theorem 3.5. For 0 ��� , �ι , � �=1,2,..., , let f� ��
��CV ( )  and � �� ��

�S* ( ). If Sµ ( )z  is locally univalent in 
∆  and achieves

�

�

� � �� �
=1

1 1
4
,� �� � �� ��� �� �� (27)

then Sµ ( )z  is univalent. Moreover, if

�

�

� � �� �
=1

1 1
2
,� �� � �� ��� �� �� (28)

then Sµ ( )z  is bounded.

Proof. Since f� ��
��CV ( ) , it follows that Dz f z

�

� ��
� ( )�C . From (22), by utilizing inequality (23) and employ-

ing the first part of Theorem 2, we conclude
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� � � �
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�

� � �

� � �

� �

� �� � � �� �� ��
�

�
�

� �

�

�

4 1 1

= 4 1 .

=1

=1

�

�[( )( )]
(29)

Therefore, from condition (27) and in view of the first part of Theorem 1.1, Sµ ( )z  is univalent.
On the other hand, then, from inequality (28) and by the second part of Theorem 1.1, Sµ ( )z  is 

bounded.

Corollary 3.6. For 0 ��� , �ι , � �=1,2,..., , let fι , � �� ��S*( ) . If Sµ ( )z  is locally univalent in ∆  and 
achieves

6 4 4 1 1
2
,

=1 =1
�� � � �� � �� �� � �

�

�

�
�

�

�� (30)

then Sµ ( )z  is univalent. Furthermore, if

6 4 4 1 1,
=1 =1
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�

�

�
�

�

�� (31)

then Sµ ( )z  is bounded.

Corollary 3.7. For 0 ��� , �ι , � �=1,2,..., , let f� ��
��SV ( ) and � �� ��

�S* ( ). If Sµ ( )z  is locally univalent in 
∆  and achieves

1 1
4
,

=1
�� � �� � ��� �

�

�

� �� (32)

then Sµ ( )z  is univalent. Further, if

1 1
2
,

=1
�� � �� � ��� �

�

�

� �� (33)

then Sµ ( )z  is bounded.
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