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Abstract
Nullity computation is widely used to determine the stability of a chemical molecule. Mainly, a mole-
cule is presented as a graph, and the graph nullity value clarifies the strength of the molecule. Some 
formulas for specific graphs help us compute the nullity value, but it is challenging to remember the 
formula of each particular graph. However, another formula for calculating the nullity value is based 
on the graph rank. Nevertheless, processing time would be increased by the growth of the number of 
vertices of graphs. This paper suggests machine learning methods for computing the nullity value of a 
given graph. We leveraged random graph generation methods to collect many graph instances. Then, 
the experimental results on the collected dataset offer accuracy of 97.0878% for binary classification 
and 94.56% for value prediction.
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1. Introduction

A graph is G V E= ( ,� )  defined on V as a set of vertices and E as a set of edges. G would be a simple 
graph if avoids self-loop and multiple-edge. Also, A(G) is the adjacency matrix of the graph. The nul-
lity of a graph, shown as η( )G , is the presence of zero as an eigenvalue in the spectrum of G where 
graph spectrum is the set of eigenvalues of the graph including with their repetition. Moreover, a λ  is 
an eigenvalue of G if det( ( ) )A G I� �� 0  where I is identity matrix. 

Knowing the number of nullities has many applications in various fields, including chemical sci-
ences. For instance, if the nullity of a graph extracted from a molecule is equal to zero, this indicates 
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that the molecule has the minimum attraction with other molecules with low chemical activity. In 
contrast, if the nullity of a graph is greater than zero, the molecule would be highly reactive and 
unstable [1]. Also, this computation would be leveraged in the calculation of the energy of graphs [2].

There are two ways to compute η( )G . First, by calculating the eigenvalues of G and counting its 
multiplicity of the zero eigenvalues that its time complexity is O n( )2  [3], [4]. Second, by computing the 
�( ) ( )G n rank G� �  where, n V G=| ( )| and rank G( )  is to the number of nonzero rows in its row echelon 
form [5]. Since the time complexity rank G( )  is O n( ).2 3  [6], the higher the growth of n, the higher the 
computation time.

However, prior works categorize and parametrize some special cases [7], [8]. For instance, the 
nullity value of complete graphs, path graphs for an even number of vertices, and cycle graphs with 
n%4 0≠  where n is the number of vertices, is zero [7]. Also, the nullity value of path graphs for an odd 
number of vertices is one, cycle graphs with n%4 0=  where n is the number of vertices is two, com-
plete bipartite graphs km n,  is m n� � 2, and Wheel graphs for even number of vertices are two and for 
an odd number of vertices is three [7]. Consequently, a large number of studies and categorizations 
are required.

Therefore, computation of some graph properties as condition number [9], s expensive in terms 
of memory cost CPU usage. Consequently, we present a new prediction method based on machine 
learning to facilitate this process. In this case, we propose a large number of graphs with their nullity 
number and offer a set of features that can be used to generate a machine learning model.

In this paper, we leveraged machine learning techniques to classify and predict the nullity of 
graphs. We listed 14 features that can be used for classification to segregate the graphs with �( )G �1 
from those �( )G � 0 . Next, we used regression models to predict the nullity value of the graph. In this 
respect, we collected many graphs and their relevant nullity values to be leveraged at model gener-
ation. Then, the experimental results on the collected dataset offer accuracy of 97.0878% for binary 
classification and 94.56% for value prediction.

Contributions: The contributions of this manuscript are highlighted here:
• Listing a set of properties leveraged for the prediction of the nullity value.
• Proposing a model to segregate the graphs with �( )G �1 from those �( )G � 0 .
• Proposing a model to predict �( )G �1.

Organization: The remaining parts of this paper are organized as follows: Section 2 presents the 
related works; Section 3 offers the feature sets for prediction and 2 suggests a new approach to binary 
classification and nullity value prediction. Our proposed method is evaluated, and the results are 
presented in Section 4. Also, detailed discussions about the pearls and pitfalls of the proposed method 
are given in this section. Finally, the concluding remarks are described in Section 5.

2. Related Works

The classification of particular types of graphs is proposed in prior works [7]–[10]. Some of the out-
comes achieved exact values, and some previous studies stated the nullity value if some classes of 
graphs are a member of a set of consequences [11]–[15]. Also, [16]–[19] defined the bound of the nul-
lity value based on some properties as the maximum degree of the graph and the number of pendent 
vertices. On the other hand, some papers classified the rank values [20]–[23] that help us to compute 
the nullity values. Moreover, L. Wang [10] proposed that � �( ) ( )G G�  for a connected graph including 
a cycle or a clique, where ρ( )G  is the minimum size of the path cover of G. However, the minimum 
path problem is NP-hard [5].

In some cases, the η( )G  of unicyclic graphs of order n ≥ 5�is a member of the interval of [ ,� ]0 4n −  
[11]. The η( )G  set of bicyclic graphs of order n is [ ,� ]0 2n −  [12]. The η( )G  set of tricyclic graphs of order 
n ≥ 8  is [ ,� ]0 4n −  [13]. The η( )G  set of bipartite graphs of order n is { , , , , }n m m n� � �2 1 2 3 2: /  [14], [15].
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η( )T , where T is a tree, is equivalent to | |T , not belonging to a maximal matching of T [16], 
[24]. Also, if G is a reduced bipartite graph and the graphs attaining equality are characterized, 
�( ) | | � ( ( ))G G G� � � �2 2 2ln  [25].

According to all the above-mentioned methods, the nullity value of graphs is a complex task. In 
this paper, we leverage machine learning methods to see the ability of these methods to compute the 
exact nullity value of a graph. Also, according to our studies, this is the first work that presents the 
computation of the nullity value of a graph using machine learning approaches.

3. Proposed Method

This paper presents a new machine learning method for computing the nullity value of graphs. Figure 1 
illustrates the block diagram of our proposed method. For the generation of a dataset, we propose an 
algorithm discussed in Section 3.1, and their nullity value is computed based �( ) ( )G n rank G� �  for-
mula to provide the ground trust values of the randomly generated graphs. For each graph, the rank 
value is subtracted from the number of vertices. Section 3.2 clarifies the feature set and represents 
how to extract attributes. We have conducted two types of experiments, a prediction on the nullity 
values based on the collected dataset and another prediction on the nullity values of instances clas-
sified as YN by using the binary classifier. The binary classification clarifies whether a given graph 
has the nullity value (YN) or not (NN). Thus, while the nullity value of the graph is greater than zero, 
then the graph has a nullity value.

3.1. Random Graph generation

To provide a dataset including a large number of various types of graphs, we present the Random 
Graph Generator proposed in Algorithm 1. This algorithm accepts the number of vertices and a 
threshold as inputs to output an adjacent matrix. This algorithm is called as much as required to 
provide a significant and influential dataset. The threshold is a value between the range [0, 1] that 
specifies the generation type to be a sparse or dense graph. There are three steps; step 1 randomly 
sets the value of the lower triangular of the adjacent matrix. In step 2, the matrix’s main diagonal is 
set to zero, and in Step 3, the values of the lower triangular are copied to the upper triangular. Thus, 
a symmetric matrix is achieved.

3.2. Feature Extraction

Features are attributes that represent the characteristics of a given graph. We introduced fourteen 
numerical attributes listed in Table 1 to predict the nullity value of the given graph.

Figure 1: Block diagram of the proposed method for nullity value prediction. Lines show the training 
phase process, and dash lines illustrate the testing phase process.



Alaeiyan M. et al., Results in Nonlinear Anal. 6 (2023), 1–8. 4

As described in Table 1, F is the Frobenius norm of the matrix that it is the square root of the sum 
of the absolute squares of its elements.
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Table 1: Feature set.
Symbol Discerption

1 n The number of columns in the matrix.
2 nnz The number of nonzero entries in the matrix.
3 avg_nnz The average value of the nonzero entries column.
4 tril_nnz The number of nonzero entries in the lower triangular part
5 nc The number of nonzero columns
6 r The fraction of the number of matrix elements by the number of nonzero 

entries in the matrix.
7 F The Frobenius norm of the matrix.
8 lowband The lower bandwidth of the matrix.
9 upband The upper bandwidth of the matrix.
10 maxband The maximum bandwidth of the matrix.
11 S The sparsity rate
12 l The lower nonzero rate
13 max_S The one norm (the maximum column summation)
14 min_S The minimum column summation
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where n is the number of columns/rows in the matrix, and A is the adjacent matrix of a given graph. 
Also, lowband  is the upper bandwidth of a matrix that is defined as the largest value of i j− , where 
aij  is nonzero. Moreover, upband  is the upper bandwidth of the matrix that is defined as the largest 
value of j i− , where aij  is nonzero. In addition, maxband  is the maximum bandwidth of the matrix 
that is defined as the max max i min j( ( ) ( ))− , where aij  is nonzero. Furthermore, the sparsity rate is 
the number of nonzero values in the matrix divided by the total number of elements in the matrix 
or S nnz

n
= 2 . Besides, the lower nonzero rate, named l, is the number of nonzero entries in the lower 

triangular part divided by the total number of elements in the matrix.

4. Evaluation

This section provides extensive details on the experiments conducted. The study investigated three 
different aspects (a) Time analysis, (b) prediction of the nullity value by various production methods, 
(c) classification, and again the prediction of the nullity value.

4.1. Dataset Preparation

We have extracted a large number of random graphs dataset with the number of vertices in the range 
[4, 1500]. The number of instances of the range [4, 50] is shown in Figure 2. In addition, there are 90 
more instances for each value in the range [51, 1500]. Then, there are 226155 instances, including 
202454 and 23701 instances with zero and greater than zero nullity values, respectively. Then, the 
dataset is imbalanced for binary classification.

4.2. Experimental Setup

We run our experiments on a PC with Lenovo Ideapad 3 laptop with Intel Core i7-CPU @ 3.3 GHz and 
8GB of physical memory running Windows 11. We used Weka 3.8.6 [26] and MATLAB [27] version 
R2022a (9.12.0).

4.3. Evaluation Metrics

We used metrics, which are listed in Table 2, to estimate the performance of classification algorithms. 
The binary classification clarifies whether a given graph has the nullity value (YN) or not (NN). True-
Positive (TP) denotes the number of true identifications of YN. True-Negative (TN) specifies the total 
number of NN identified appropriately. False-Positive (FP) specifies the number of misclassified YN, 
and finally, False-Negative (FN) designates wrongly identified NN.

Root mean squared error clarifies the difference between prediction and truth for each instance 
with the actual value of xi  estimated as xi∧ . Also, N is the number of instances.

Figure 2: The number of samples in range [4-50].
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4.4. Time Improvement

The time performance of our proposed machine learning-based method and the nullity computation 
formula are illustrated in Figure 3. Axes demonstrate the number of vertices and time that is the 
average time spent for nullity computation. As the number of vertices grows, the nullity calculation 
processing time increases. Thus, this figure clarifies the advantage of our proposed method for nullity 
computation based on machine learning.

4.5. Performance Analysis

We applied prediction and binary classification methods to compare the performance of machine 
learning for the collected dataset. Table 3 shows the performance of binary classifications. J48 pro-
vides better performance compared with other binary classifiers.

Next, we compared the prediction performance of those instances where their nullity value is 
greater than zero. Table 4 presents the prediction performance of prediction methods for the men-
tioned samples. The M5P tree has better performance and has a lower RMS error value.

Figure 3: Time performance of the proposed method.

Table 2: Performance metrics used in the experiments.
Metric Formula
Accuracy TP TN

TP FP TN FN
+

+ + +

Precision TP
TP FP+

Recall TP
TP FN+

MCC TP TN FP FN
TP FP TP FN TN FP TN FN

� � �
� � � �( )( )( )( )

F measure TP

TP FP FN+ +
1
2
( )

Root mean squared error
i

N
i ix x
N

�

�� �
1

2( )



Alaeiyan M. et al., Results in Nonlinear Anal. 6 (2023), 1–8. 7

The prediction performance for all dataset instances is shown in Table 5, which explains the advan-
tage of the M5P Tree performance with a lower RMS error value compared with other methods.

5. Conclusion

Instead of computing the nullity value of graphs by leveraging the formula, for the fist time, we pro-
posed fourteen features to explore the machine learning model with better performance and a lower 
computational time. We offer a random graph generation method to collect many graph instances to 
show the graph type is not a constraint. The features and the nullity values of graphs are extracted, 
and the machine learning model is achieved. The collected dataset is classified and predicted with 
some model generation algorithms. In comparison, the J48 algorithm, with an accuracy of 97.0878% 
and the M5P algorithm, with an accuracy of binary 94.56%, had better performances for binary clas-
sification and value prediction, respectively.

Table 3: Performance of binary classification.

Decision Tree

Correctly 
Classified 
Instance

Root Mean 
Squared 

Error Precision Recall F measure MCC
ROC 
Area

Naive Bayes 77.2793% 0.4742 0.925 0.773 0.815 0.474 0.965
Random Tree 95.6999% 0.2009 0.957 0.957 0.957 0.769 0.903
REP Tree 97.0436% 0.1429 0.970 0.970 0.970 0.837 0.986
Decision Stump 96.2787% 0.189 0.964 0.963 0.959 0.787 0.819
J48 -C 0.25 97.0878% 0.1443 0.970 0.971 0.970 0.841 0.981
IBk (KNN) 95.6322% 0.2021 0.956 0.956 0.956 0.765 0.899
Random Forest 96.2446% 0.1627 0.962 0.962 0.962 0.797 0.984

Table 4: Prediction performance for those samples that their nullity value is greater than zero.

Decision Tree
Correctly Classified 

Instance
Root Mean Squared 

Error
Relative Absolute 

Error
Decision Stump 0.7316 1.3449 64.1542%
Random Tree 0.7898 1.2806 51.2895%
REP Tree 0.8778 0.9459 42.4209%
Simple linear 
Regression

0.8329 1.0916 52.6387%

M5P Tree 0.8917 0.8928 41.5148%

Table 5: Prediction performance.

Decision Tree
Correctly Classified 

Instance
Root Mean Squared 

Error
Relative Absolute 

Error
Decision Stump 0.8183 0.6068 50.9094%
Random Tree 0.8928 0.4894 25.3344%
REP Tree 0.9392 0.3626 20.9181%
Simple linear 
Regression

0.898 0.4644 36.72%

M5P Tree 0.9456 0.3433 20.302%
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