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Abstract

Our aim in this paper is to investigate the analytical solutions of two dimensional non- linear system
of Burger’s equations. We present two problems for the efficiency of the proposed hybrid techniques form
by coupling Laplace transform with Adomian polynomials method. The proposed method is named as
Laplace transform Adomian decomposition method (LTADM). Two test examples are solved by the consid-
ered method to derive efficiency of the proposed method.
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1. Introduction and Preliminaries

Different types of methods have been presented for finding the solutions of linear and non- linear problems
such as Fourier transform method(FTM) [12], homotopy analysis method(HAM) [3], Adomian decomposition
method(ADM) [7], the Exponential function method (EFM) [8], variational iteration method (VIM) [6], etc.
In present work, we use LTADM to find analytical solutions to non- linear system of Burger’s equations.
Usually the proposed coupled system arises in the study of fluid flow. This type of problems is used to model
various kinds of phenomena such as turbulence and the approximate theory of flow through a shock wave
traveling in a viscus fluid [2]. The Burger’s equations contains Reynolds’s number which was introduced
by Stokes in 1851, but the Reynolds’s number was named by Arnold Sommerfeld in 1908. The mentioned
number is used to help portend flow shape in different fluid flow situations. At low Reynolds’s numbers, flows
tend to be dominated by laminar flow, while at high Reynolds’s numbers flows may sometimes intersect or
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move counter to the overall direction. The Reynolds’s number has wide applications like it is used in fluid
mechanics such as the movement of organisms swimming through water, the movement of air in atmosphere,
for designing fountain heads, for water tubes and pumps etc.
LTADM [11] has been used as a powerful technique for solving non- linear ordinary and partial differential
equations. In this method the unknown terms can be expressed in the form of infinite series like u(x, y, t) =∑∞

n=0 un and the non- linear terms may be decomposed in terms of Adomian polynomials as Nu(x, y, t) =∑∞
n=0An. Consider product of two functions uux, expand this non- linear term through Adomian polynomial

as

An =
1

n!

[
dn

dλn

( ∞∑
i=0

(λiui)

)( ∞∑
i=0

(λiui,x)

)]∣∣∣∣
λ=0

(1.1)

for n = 0, we have, A0 = u0u0,x
for n = 1, we have, A1 = u0u1,x + u1u0,x
for n = 2, we have, A2 = u0u2,x + u1u1,x + u2u0,x
generally we have, An = u0un,x + u1un−1,x + u2un−2,x + · · · + un−1u1,x + unu0,x. This technique has been
largely employed to solve large variety of problems such as Lane Emden Fowler equations [11], Falkner Skan
equation [4], etc.
In present work, the proposed scheme LTADM is applied to two numerical problems of Burger’s equations
for the analytical exact/approximate solutions of these systems. Here we describe some preliminaries results
as:

Definition 1.1. For the function u(x, y, t) the Laplace transform of u(x, y, t) is defined as

L[u(x, y, t)] =

∫ ∞
0

exp(−st)u(x, y, t)dt, s > 0,

for x, y ∈ [a, b] and t > 0.

Theorem 1.2. Suppose that X is Banach space and T : X → X is a contraction non linear mapping and if
we consider the generated sequence of solutions via LTADM is written as

u(k) = T (u(k−1)), k = 1, 2, 3, · · · ,

then the following holds

1. ||u(k) − u|| −X ≤ µk||Tu− u||X , 0 ≤ µ < 1;

2. u(k)(x, t) is always hold in the neighborhood u(x, t) implies that

u(k) ∈ B(u, r) ⊂ X, where B(u, r) = {u∗ ∈ B : ||u∗ − u||X < r};

3. limk→∞ u
(k) = u.

Proof. For proof see [10].

2. General idea for two dimensional system of Burger’s equation

In this part we give basic idea for LTADM. Consider two dimensional system of Burger’s equations [1] of
the form

ut + uux + vuy =
1

R
(uxx + uyy),

vt + uvx + vvy =
1

R
(vxx + vyy),

with initial conditions
u(x, y, 0) = α(x, y), v(x, y, 0) = β(x, y).

(2.1)
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And (x, y)εΛ and t > 0,
where Λ = {(x, y) : a ≤ x ≤ b, a ≤ y ≤ b}, R is the Reynolds numbers and u(x, y, t), v(x, y, t) are velocity
components.
Applying first Laplace transform, then inverse Laplace transform to equation (2.1) and using initial conditions
we get

u(x, y, t) = α(x, y)− L−1
[

1

s
L
(
uux + vuy

)]
+

1

R
L−1

[
1

s
L
(
uxx + uyy

)]
,

v(x, y, t) = β(x, y)− L−1
[

1

s
L
(
uvx + vvy

)]
+

1

R
L−1

[
1

s
L
(
vxx + vyy

)]
.

(2.2)

In equation (2.2) involve four non- linear terms, by considered method we decompose these four non- linear
terms through Adomian polynomials as

uux =
∞∑
n=0

An(x, y, t)

vuy =

∞∑
n=0

Bn(x, y, t)

uvx =
∞∑
n=0

Cn(x, y, t)

vvx =

∞∑
n=0

Dn(x, y, t).

(2.3)

The Adomian polynomials can be generated for all forms of non- linear terms. They are determined by
the following relations

An(x, y, t) =
1

n!

[
dn

dλn

( ∞∑
i=0

(λiui)

)( ∞∑
i=0

(λiui,x)

)]∣∣∣∣
λ=0

,

Bn(x, y, t) =
1

n!

[
dn

dλn

( ∞∑
i=0

(λivi)

)( ∞∑
i=0

(λiui,y)

)]∣∣∣∣
λ=0

,

Cn(x, y, t) =
1

n!

[
dn

dλn

( ∞∑
i=0

(λiui)

)( ∞∑
i=0

(λivi,x)

)]∣∣∣∣
λ=0

,

Dn(x, y, t) =
1

n!

[
dn

dλn

( ∞∑
i=0

(λivi)

)( ∞∑
i=0

(λivi,x)

)]∣∣∣∣
λ=0

.

(2.4)

and the unknown terms u(x, y, t), and v(x, y, t) decomposes by an infinite series of components as

u(x, y, t) =
∞∑
n=0

un(x, y, t), v(x, y, t) =
∞∑
n=0

vn(x, y, t). (2.5)

Using equations (2.3) and (2.5) in equation (2.2), we get
∞∑
n=0

un(x, y, t) = α(x, y)− L−1
[

1

s
L
∞∑
n=0

(
An +Bn

)]
+

1

R
L−1

[
1

s
L
∞∑
n=0

(
un,xx + un,yy

)]
,

∞∑
n=0

vn(x, y, t) = β(x, y)− L−1
[

1

s
L
∞∑
n=0

(
Cn +Dn

)]
+

1

R
L−1

[
1

s
L
∞∑
n=0

(
vn,xx + vn,yy

)]
.

(2.6)
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Comparing both hand sides terms for n = 0, 1, 2 . . . we obtained the following terms

u0(x, y, t) = α(x, y),

v0(x, y, t) = β(x, y).
(2.7)

u1(x, y, t)− L−1
[

1

s
L
(
A0 +B0

)]
+

1

R
L−1

[
1

s
L
(
u0,xx + u0,yy

)]
,

v1(x, y, t) = −L−1
[

1

s
L
(
C0 +D0

)]
+

1

R
L−1

[
1

s
L
(
v0,xx + v0,yy

)]
.

(2.8)

Generally we write

un+1(x, y, t) = −L−1
[

1

s
L
(
An +Bn

)]
+

1

R
L−1

[
1

s
L
(
un,xx + un,yy

)]
,

vn+1(x, y, t) = −L−1
[

1

s
L
(
Cn +Dn

)]
+

1

R
L−1

[
1

s
L
(
vn,xx + vn,yy

)]
.

(2.9)

The obtained terms written in the form of infinite series as

u(x, y, t) = u0(x, y, t) + u1(x, y, t) + u(x, y, t) + . . . ,

v(x, y, t) = v0(x, y, t) + v1(x, y, t) + v2(x, y, t) . . .
(2.10)

which constitute the solution.

3. Applications

In this section, we illustrate the above presented method, by two problems.

Example 3.1. Consider the two dimensional system of Burger’s equations [1] with initial conditions

u(x, y, 0) = x+ y, v0(x, y, 0) = x− y.

And the domain has been taken as Λ = {(x, y) : 0 ≤ x ≤ 0.7, 0 ≤ y ≤ 0.7}.
Taking same procedure of generalized form, then using the given initial conditions, we lead

u(x, y, t) = x+ y − L−1
[

1

s
L
(
uux + vuy

)]
+

1

R
L−1

[
1

s
L
(
uxx + uyy

)]
,

v(x, y, t) = x− y − L−1
[

1

s
L
(
uvx + vvy

)]
+

1

R
L−1

[
1

s
L
(
vxx + vyy

)]
.

(3.1)

Putting equations (2.3) and (2.5) in equation (3.9), we obtain

∞∑
n=0

un(x, y, t) = x+ y − L−1
[

1

s
L
∞∑
n=0

(
An +Bn

)]
+

1

R
L−1

[
1

s
L
∞∑
n=0

(
un,xx + un,yy

)]
,

∞∑
n=0

vn(x, y, t) = x− y − L−1
[

1

s
L
∞∑
n=0

(
Cn +Dn

)]
+

1

R
L−1

[
1

s
L
∞∑
n=0

(
vn,xx + vn,yy

)]
.

(3.2)

Comparing both hand sides terms for n = 0, 1, 2 . . . we obtained the following terms

u0(x, y, t) = x+ y,

v0(x, y, t) = x− y.
(3.3)
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u1(x, y, t) = −2xt,

v1(x, y, t) = −2yt.
(3.4)

u2(x, y, t) = −4(x+ y)
t2

2!
,

v2(x, y, t) = −4(x− y)
t2

2!
.

(3.5)

u3(x, y, t) = −12x
t3

3!
,

v3(x, y, t) = −12y
t3

3!
.

(3.6)

u4(x, y, t) = 12(5x+ 4y)
t4

4!
,

v4(x, y, t) = 12(7x− 6y)
t4

4!
.

(3.7)

Infinite series form of terms as

u(x, y, t) = x+ y − 2xt− 4(x+ y)
t2

2!
− 12x

t3

3!
+ 12(5x+ 4y)

t4

4!
,

v(x, y, t) = x− y − 2yt− 4(x− y)
t2

2!
− 12y

t3

3!
+ 12(7x− 6y)

t4

4!

(3.8)

Applying the convergence theorem to above infinite series solution, suppose

Φn = T (Φn−1), Φn−1 = (Un−1, Vn−1)

where
U0 = u0 + u1, V0 = v0 + v1

and

Un =

2n+1∑
i=0

ui, Vn =

2n+1∑
i=0

vi where t ≤
√
µ

2
, 0 ≤ µ ≤ 1

By convergence theorem for n = 0, we get

‖U0 − φ‖X= ‖(u0 + u1)− φ‖X =µ0‖ − 2t2

1−2t2 (x+ y − 2xt)‖X .

For n = 1

‖U1 − φ‖X= ‖(u0 + u1 + u2)− φ‖X = ‖ − 4t4

1−2t2 (x+ y − 2xt)‖X .

‖U1 − φ‖X= ‖(u0 + u1 + u2)− φ‖X ≤ µ1‖ − 2t2

1−2t2 (x+ y − 2xt)‖X .

This implies that

‖U1 − φ‖X = µ1 ‖U0 − φ‖X .

For n = 2

‖U2 − φ‖X= ‖(u0 + u1 + u2 + u3)− φ‖X = ‖ − 8t6

1−2t2 (x+ y − 2xt)‖X .

‖U2 − φ‖X= ‖(u0 + u1 + u2 + u3)− φ‖X ≤ µ1‖ − 2t2

1−2t2 (x+ y − 2xt)‖X .

This implies that
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‖U2 − φ‖X = µ2 ‖U0 − φ‖X .

For k = n, we have

‖Un − φ‖X = µn ‖U0 − φ‖X .

Taking limit as n→∞

limn→∞ ‖Un − φ‖X = limn→∞ µ
n ‖U0 − φ‖X = 0.

Therefore
u(x, y, t) = lim

n→∞
Un = φ =

x+ y − 2xt

1− 2t2
.

Similarly

v(x, y, t) = lim
n→∞

Vn = φ =
x+ y − 2yt

1− 2t2
.

Hence the approximate solutions tends to exact solutions by taking n→∞ which demonstrates the efficiency
of the proposed method for a nonlinear coupled system of Burger’s equations.

Example 3.2. Consider the two dimensional system of Burger’s equations [5] with initial conditions

u(x, y, 0) = sin(πx) + cos(πy), v0(x, y, 0) = x+ y.

And the domain has been taken as Λ = {(x, y ≤ x ≤ 0.7, 0 ≤ y ≤ 0.7}.
Taking same procedure of generalized form, then using the given initial conditions, we lead

u(x, y, t) = sin(πx) + cos(πy)− L−1
[

1

s
L
(
uux + vuy

)]
+

1

R
L−1

[
1

s
L
(
uxx + uyy

)]
,

v(x, y, t) = x+ y − L−1
[

1

s
L
(
uvx + vvy

)]
+

1

R
L−1

[
1

s
L
(
vxx + vyy

)]
.

(3.9)

Putting equations (2.3) and (2.5) in equation (3.9), we obtain
∞∑
n=0

un(x, y, t) = sin(πx) + cos(πy)− L−1
[

1

s
L
∞∑
n=0

(
An +Bn

)]
+

+
1

R
L−1

[
1

s
L
∞∑
n=0

(
un,xx + un,yy

)]
,

∞∑
n=0

vn(x, y, t) = x+ y − L−1
[

1

s
L
∞∑
n=0

(
Cn +Dn

)]

+
1

R
L−1

[
1

s
L
∞∑
n=0

(
vn,xx + vn,yy

)]
.

(3.10)

Comparing both hand sides terms for n = 0, 1, 2 . . . we obtained the following terms

u0(x, y, t) = sin(πx) + cos(πy),

v0(x, y, t) = x+ y.
(3.11)

Taking Reynolds’s number R = 50, and for the sack of simplicity we put value of u0 ( initial condition) in
u1, u2 terms

u1(x, y, t) = t

[
− u0π cos(πx) + (x+ y)π sin(πy)− 1

50
π2u0

]
,

v1(x, y, t) = −t
[
u0 + x+ y)

]
.

(3.12)
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u2(x, y, t) =
t2

2!

[(
u0π cos(πx) +

π2

50
u0 − (x+ y)π sin(πy)

)
π cos(πx) +

1

2500
π4 sin(πx)

+ u0

(
π2 cos2(πx)− sin(πx)− π2 sin(πx) cos(πy)− π sin(πy) +

π3

50
cos(πx)

)
−
(
u0 + (x+ y) +

π2

50
+
π2

50
(x+ y) + 1

)
π sin(πy) +

1

50

(
− π2 sin(πy)

+ 3π3 sin(πx) + cos(πy) + π3u0

)
cos(πx) +

(
(x+ y) +

1

25
+

1

2500
π2
)
π2 cos(πy)

]
,

v2(x, y, t) =
t2

2!

[(
2π cos(πx) +

1

25
π2 + 2

)
u0 − (x+ y)

(
2π sin(πy) + 1

)]
.

(3.13)

The other terms can be similarly computed. Infinite series which form the solutions as provided as

u(x, y, t) = u0(x, y, t) + u1(x, y, t) + u2(x, y, t) + . . . ,

v(x, y, t) = v0(x, y, t) + v1(x, y, t) + v2(x, y, t) + . . . .
(3.14)

In the following Figures 1 to 4, we have plotted the given solutions for three terms and four terms respectively.

Figure 1. The plot of first three terms approximate solution of v at time level t = 0.8 of Example 3.2.
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Figure 2. The plot of first four terms approximate solution of v at time level t = 0.8 of Example 3.2.

Figure 3. The plot of first three terms approximate solution of u at time level t = 0.8 of Example 3.2.
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Figure 4. The plot of first four terms approximate solution of u at time level t = 0.8 of Example 3.2.

4. Conclusion

We have been successfully applied the LTADM for obtaing analytical approximate solutions to system of
Burger’s equations. By doing so we obtained approximate solutions which is closed to the exact solutions. A
results which described the convergency of the proposed method has been given. We observed that LTADM
is easy and sufficient techniques for analytical solution of such like problems.
Acknowledgment We are really thank full to the reviewers for their useful suggestions and corrections.
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