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Abstract

In this paper, we have implemented Sinc collocation method (SCM) to solve linear systems of higher
order Fredholm Volterra integro—differential equations (FVIDEs) with variable coefficients. This
method transforms the system FVIDEs into algebraic equations. Two examples are included to illus-
trate the accuracy and success of the proposed method. We also point out that, as the number of
dimensions increases we get satisfactory results, as explained in the figures and tables.
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1. Introduction

Systems of integro—differential equations (IDEs) are widely related to the physical and engineer-
ing problems of life such as the ripple of winds in the desert, nano—hydrodynamics, oceanography,
modelling, and population growth model [2], [5]. There are many numerical methods in which sys-
tems of IDEs. can be solved even if an exact solution can’t be found, so knowing the accurate and
appropriate method to solve such problems is the most important. Many authors have used differ-
ent numerical methods to solve these systems such as Darvishi and others [6], by implementing a
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semi—analytical technique to give an approximate solution of systems of FVIDEs and prove the effi-
ciency of the method by adding a higher number of terms. In [7], [13], Keramati et al. have employed
Taylor method for solving linear and nonlinear systems of FVIDEs. In addition, Basirat and others [8]
suggested another method that combines the Bernstein matrices and the collocation technique to
improve and solve the system of FVIDEs. In [9] Attary introduced an approximation to a system of
FVIDESs with variable coefficients through the Shannon technique. There are also many methods to
approximate the solution of the proposed system, such as Bezier control method [10], Chebyshev poly-
nomial method [11], Modified decomposition method [14], Shifted Chebyshev polynomial method [12],
Lagrange method [15]. In [1], Holmaker proved the stability in solving systems of IDEs that describe
the construction of liver zones. In this paper, we will use SCM to solve linear systems of higher order
FVIDESs with variable coefficients, that is,

r A 1 A
D2 h UL =) + IO (2& ;&mU, (n)Jdn
a=01=1 =1
A (1)
t .
+IO£;ulj(t,n)Ul(n)]dn,t e[0,11,j=1,2,..., 4,
with initial conditions
U® =n,,£=0,1,..,0-1, ©)

where «;(t,n), ,;(¢,m), P,(t) are known functions, and U, (¢) are the unknown functions of equation (1).
This method reduces the solution of system (1) to a solution of an algebraic system by extending the
solution U, (t) into two functions based on the interpolating points and unknown coefficients resulting
from the Sinc basis.
We should mention that the time and effort to calculate the solutions, when using this method,
were very reasonable.

2. SCM for the Approximate Solution of Linear Systems of FVIDEs

The collocation method is most applied to gain the numerical solution of ordinary differential equa-
tions, partial differential equations and integral equations.
If t # 0, then the sinc function is given by [3]

sinc(t) = M, 3
nt
where the translated sinc function is defined by
S(a,h)(t) = sinc(t - ahj,Va eZ. 4)
For the interpolating points ¢, = lh, the Sinc function is given by [4]:
0,a#1
S(a,h)(lh)y=c_,=1" .
(a.h)Ih) = o, {La: ; (5)

If he N" and m(t) is a function defined on (-o0,0), then the Whittaker expansion of this function is
defined by

E(m,h)(®) = i m(ah)S(a,h)(?). (6)
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To get an approximation on (v;,h), the conformal map

w =5(z)=ln[2_vlj

is appointed. This map transforms the eye—shaped region

BF={zeC:|arg[2_vljl<ASn/2}

-z

onto the infinite strip:
B, =w=fi+if,:1f1<A<n/2}.

The basis functions for z € B, on (v;,h) are chosen as:

S(a,h) o 8(t) = sinc(WJ, )
where S(a,h)o5(t) = S(a,h)(5(t)).

The interpolation points {t,} are then obtained by:
v, +v,e”
Ih

t,=6"(h) = leZ. )

l1+e

Theorem 2.1. [4] Let N € N*,% e L (By) and h be chosen by

h= EZ3 "
M ’
where 0<t<1,A < % In addition to, let ‘Pé}LD be defined as
a-l
po = % + Io sinc(t)dn.

Then, 3 ¢, € N°, such that

: u U(z)
Umdn-h Y plP —=
L3 le ' s(z)

—(mar M2

<ce . 9)

Theorem 2.2. [3] If § is a conformal one to one map of a simply connected domain By onto By, then
dO{
ds”

Consider the FVIDEs (1) with ICs (2) and let U (t) € L, (By).
In the beginning we suppose that the unknown functions U, (t) are approximated as follows:

U @) =P+ X, 1), (10)

\P;OIL) = [S(a,l)o 5(t)]t=tl .

where

M a
P@W)= ) p;w(t)sinc[wj,xl(t) = >t (11)
=M Jj=0

a=—
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with p, are unknown coefficients and w(t) =t (¢t -1)“.

Apply I: -dn to (10), we get:
U mdn = [ Padn + [ X, (e
|U.Gndn = [ P.dn + | X,(m)dn, (12)
and by applying J-(j -dn to (10), we get:

t t t
[{U.andn = [ P.(mydn + [ X, (rydn. (13)
By differentiating both sides of (10) with respect to ¢, we get

U“(6) = P(1) + X(t), (14)

d” (w(t)sinc (5(0 —ah D
h (15)

dt”

where

M
Pl(a)(t) — Z D,
a=-M

lh

By substituting (12), (13) and (14) into (1) and find the results of Sinc points ¢, = n ¢ where

+elt’
=-M-1,...,M, as well as using Theorems (2.1) and (2.2), we will obtain a system of alge-
braic equations in which the sum of number of ¢’s and number of initial conditions is equal to
the sum of number of p,’s and number of x;’s, which can be solved to get {p. M ., and {0,
where the number of t’s=2(M +1)A, the number of initial conditions =oaA, the number of
P,s=(2M +1)A, and the number of x;’s=(a +1)A.
The SCM is illustrated by Algorithm 1

Algorithm 1 Numerical realization Using SCM
1) Input

o M, a, A, 7,&

Q.(t)
Koy(t), puy(t) for e =1,...,A;5=1,..., A

Initial condition U,(0)
Initial condition U (0) for € =1,...,a— 1

2) Define

® Sinc function S(a, h,t)

* X, (t) =X gzt

* P(t)= Zj‘i_,upus'(m, l,t)

3) Replace U, (t) = P.(t) + X, (t)

4) Solve

® interpolating point t;, | = —-M — 1,-M,...,M

. Eji (tf) = E?L(ti) + fnl z:l=l HLJ(tl$"])(/TL(7))dn + J;:r Z:lzl k-z;(t{-_ 7])01(7])(1’7]
e U, (0)=U,0)

o U (0) = U¢(0)

5) Resolving the algebraic equations to obtain p,; and x,,
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3. Numerical Examples

Now we will present an approximate solution to some systems of FVIDEs with variable coefficients
using SCM.

We took A =x/2, and 7 =1/2 for all examples
Example 3.1. Consider the following FVIDEs

AU (x) - xU,(x) + U, (x) = @, (x) + .[;[(x?’ — YU, (t) + (4t — 3x)U, (1) + 262U, ()]dt
+[ 18U, 0+ x°U,(0) + 2U, Ol
(AU} (x) + 38U, (x) = @y (x) + j;[a 3t — 4x)U, (t) + (tanhx)U,(t) + 6£°U, (t)]dt
+] T4 + U, () + U, (0) + TeU, ()ldt, (16)
(sinx)U;(x) - U, (x) - 2U, (x) = @, (x)
+ jol[(xf’ —BEU, (1) + (3 — x2)U, (t) + (3 + 40U, (t)]dt

+[ T6x" U, (0) + @)U, 0) + Uy ),

where
Ql(x)=%—37x+25x2—§x3—4x4+22x6—x8,
2
Qz(x)=—5+28 —%+21 3—%xf’—2x6+21tanhx,
QS(x)=@—ﬂx2—4x3+Ex5—2x7—§x8—sinx
6 2 10 7 2
with ICs:

U,(0)=1,U,(0) = -22,U,(0) = 0.
The analytical solution of (16) is
U (x)= 2% + 1,U,(x) = 3x% — 22,U,(x) = —x.

Now we apply Algorithm 1 to solve the system (16).

Tables 1 and 2 contain the solution by SCM. Tables 3 and 4 show the error for SCM with M =3, M = 4.
Figure 1.(A,B,C) shows the solution by SCM with M = 3. Figure 2.(A,B,C) shows the solution by SCM
with M = 4. Figure 3 shows the error by SCM.

Example 3.2. Consider the following FVIDEs
xyTm 2r71n " 1 i 5 7 |
e U;(x) +x*Uj(x) + Up(x) = Q () + | (it]Ul(m[ngUz(t) dt

+[ 15t - )0, () + (5t + )T, (0))dlt,
’ (17)

UL @)+ U + 4010 = Qo)+ )| T 0+ T o

+[ T =700, @ + (e + THU, O,
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Table 1: Solution of U, and U, for system (16).
Ulapp UZapp
X Lexcet M=3 M=4 pesaet M=3 M=4
0 1 1 1 22 —22 —-22
0.1 1.002 1.002 1.002 -21.97 -21.97 -21.97
0.2 1.016 1.016 1.016 —21.88 —21.88 —21.88
0.3 1.054 1.054 1.054 —-21.73 —-21.73 —21.73
0.4 1.128 1.128 1.128 —21.52 —21.52 —21.52
0.5 1.25 1.25 1.25 —21.25 —-21.25 —-21.25
0.6 1.432 1.432 1.432 —20.92 —20.92 —20.92
0.7 1.686 1.686 1.686 —-20.53 —-20.53 —-20.53
0.8 2.024 2.024 2.024 —20.08 —20.08 —20.08
0.9 2.458 2.458 2.458 -19.57 -19.57 -19.57
Table 2: Solution of U, for system (16).
3app

X seract M=3 M=4

0 0 0 0

0.1 -0.1 -0.1 -0.1

0.2 —0.2 -0.2 -0.2

0.3 -0.3 -0.3 -0.3

0.4 -0.4 -0.4 -0.4

0.5 -0.5 —0.499999 -0.5

0.6 -0.6 —0.599999 -0.6

0.7 -0.7 -0.7 -0.7

0.8 -0.8 -0.8 -0.8

0.9 -0.9 -0.9 -0.9

Table 3: Error of U, and U, for system (16).
| U1 - Ulapp l | Uz - UZapp |

X M=3 M=4 M=3 M=4
0 0 0 0 0
0.1 3.3411e-9 1.45811e-10 2.54549e—7 8.68354e—10
0.2 7.75286e-9 5.63727e—10 5.19588e—7 2.07003e—9
0.3 2.16689e—8 1.34166e—9 2.16164e-7 5.06915e-10
0.4 9.434e-8 2.45523e-9 5.25623e-7 4.31017e-9
0.5 1.46346e—7 3.18166e-9 1.00497e—6 4.80668e—9
0.6 1.00975e—7 2.77823e—9 7.78405e—7 1.90317e-9
0.7 3.11504e-8 1.5904e-9 9.71665e—8 1.03456e—9
0.8 1.4162e-7 6.78192e-10 4.06849e—7 1.86478e-9
0.9 1.56406e—7 2.31494e—-10 4.67487e—7 1.64211e-9
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where

with ICs:

Table 4: Error of U, for system (16).

| UB_USappl

X M=3 M=4

0 0 0

0.1 2.40681e—7 8.9125e-10
0.2 4.79611e—7 2.83849e-9
0.3 2.31625e—7 6.76723e—9
0.4 4.01656e—7 1.33012e-8
0.5 8.27506e—7 1.85829e—-8
0.6 6.57299e—7 1.87364e—8
0.7 8.87771e-8 1.47644e—8
0.8 3.45183e—7 9.88178e-9
0.9 4.08934e-7 4.51731e-9

[ — Exact

%  Numarical

Us(x)

-19.0F
-19.5f
-20.0f
-205f
-210¢

— Exact

% Numarical

— Exact

4% Numarical ]

Figure 1: Solution of system (16) by SCM (M = 3).

91 91
X)=—-——x+
@, (x) 5 6

295 197

Qz(x) = _E—F?x -

3x% —4x° —10x*,

2x? —gx?’ —§x4

3

U,(0) = U,(0) = 1,U(0) = -4,U}(0) = 4,U/(0) = UL(0) = 8.

1.0
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3of '—Exalct' =190 Exz;a
% Numarical -19.5 % Numarical
3
00 02 0.4 0‘6 08 1:0
X X
(4) (B)
oof SReeas
02 % Numarical ]
2 -04
S o6
-08
=10, X X
0.0 0.2 04 06 08 10
X
(¢)
Figure 2: Solution of system (16) by SCM (M = 4).
10°
1.5-' -
s
W10l
g
o
205
<
00
X
(B) M=4
Figure 3: Error by SCM for system (16).
Table 5: Solution of system (17).
lapp 2app
x lexact M = 5 M = 6 2exact M = 5 M = 6
0 1 1 1 1 1 1
0.1 0.64 0.640119 0.64 1.44 1.43981 1.44
0.2 0.36 0.360494 0.36 1.96 1.95924 1.96
0.3 0.16 0.161163 0.16 2.56 2.55829 2.56
0.4 0.04 0.0421568 0.04 3.24 3.23694 3.24
0.5 0 0.00350293 —3.63282e—8 4 3.99516 4
0.6 0.04 0.0452234 0.04 4.84 4.83293 4.84
0.7 0.16 0.167336 0.16 5.76 5.7502 5.76
0.8 0.36 0.369854 0.36 6.76 6.74693 6.76
0.9 0.64 0.652787 0.64 7.84 7.82308 7.84
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The analytical solution of (17) is

U, (x) =(1-2x)%,U,(x) = (1+2x).

Now we apply Algorithm 1 to solve the system (17).

Table 5 contains the solution by SCM. Table 6 shows the error for SCM with M =5, M =6. Figure 4.(A,B)
shows the solution by SCM with M = 5. Figure 5.(A,B) shows the solution by SCM with M = 6. Figure 6

shows the error by SCM.
Table 6: Error of system (17).
| Ul_ Ulappl | Uz_ U2app
X M=5 M=6 M=5 M=6
0 0 0 0 0
0.1 1.18927e—4 4.93331e—-10 1.90706e—4 3.60051e—-10
0.2 4.94069e—4 5.8574e-10 7.568348e—4 1.12957e-9
0.3 1.16277e-3 1.1695e—8 1.70992e—3 1.19834e-8
0.4 2.15679e-3 2.94792e—8 3.06187e-3 2.89078e—8
0.5 3.50293e-3 3.63282e—8 4.839e—3 3.5178e—-8
0.6 5.22339e-3 1.87501e-8 7.07327e-3 1.75677e-8
0.7 7.33596e—3 1.39048e—8 9.80266e—3 1.55183e—8
0.8 9.85403e—3 3.40151e-8 1.30701e—2 3.77311e-8
0.9 1.27866e—2 2.83699e—8 1.69224e—2 3.59158e—8

— Exact ~— Exact

% Numarical

% Numarical

Figure 4: Solution of system (17) by SCM (M = 5).

— Exact
[ % Numarical

— T
— Exact
% Numarical

04 06 08

Figure 5: Solution of system (17) by SCM (M = 6).
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102 10°®

1.5}
5 5
| =
w 10t w
E 3
2 2
805 a
< <

0.0

X X
(A) M=5 (B) M—6

Figure 6: Error by SCM for system (17).

4. Conclusion

In this article, an accurate algorithm (Sinc Algorithm) was constructed to solve linear systems of
Fredholm Volterra integro—differential equations (FVIDESs), also we noticed that the results obtained
using the proposed algorithm were very satisfactory compared with analytical solutions. In addition,
we observed that when the dimension is increased, the absolute error is reduced and gives results that
achieve high accuracy with analytical solutions.
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