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Abstract
Fractional order systems play a vital role in the study of the abnormal behavior of dynamic systems 
in physics, biology, viscoelasticity, and in the study of population dynamics. The thing that caught 
our attention thinking about using the order of the fractional derivatives as a function, where we find 
some works (mentioned in the introduction), in which the order of the fractional derivative has been 
used as a function that changes with concentration, time, space, or other independent quantities. 
Motivated by these works in this manuscript, we studied the existence of solutions of the following 
hybrid fractional differential equation of variable order involving the ψ-Hilfer fractional derivative
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where 0 1� � �� �( ) ( )t t , 0 1� �� , � � � �( ) ( ) ( ( ))t t t� � �1 , f C J� �( , ) * , and h C J� �( , )  .
We used some techniques to show the existence of the solution by the Krasnoselskii fixed point theo-
rem. These techniques are based on the change of the variable �H tD u t0�

� � �( ), , ( ). Further, an example is 
provided to illustrate our results.
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1. Introduction

The theory of fractional differential equations has emerged as an interesting area to explore in 
recent years. The concepts of fractional derivation and integration are often associated with Riemann 
and Liouville, while the questioning of the generalization of the notion of derivative to fractional orders 
are examined in earlier studies. Indeed, the history of fractional calculus began with a key question 
from Leibniz, to whom we owe the idea of fractional derivation. He introduces the derivation symbol 
of order n, d y

x

n

n , where n is a positive integer. It was perhaps a naive game of symbols that prompted 

the L’H’ôpital. To wonder about the possibility of having n in , He asked the question: what if n =
1
2

 

In 1695, in a letter to the L’H’ôpital, Leibniz prophetically wrote: “So it follows that D x
1
2  will be equal 

to x dx x:2 , an apparent paradox from which useful conclusions will one day be drawn?” Fractional 
calculus has been considered one of the best mathematical tools to characterize the memory property 
of complex systems and certain materials [16, 2, 6]. Indeed, in the classical approach, the memory of 
a system can be represented by the following integer order derivative
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when we use this definition to characterize a system, we can say that it represents the short memory 
property of the system, since this definition only used values in two points. However, in the fractional 
approach, the memory of a system can be represented by the following fractional order derivative [7]
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where α is the fractional derivative order. the expression of fractional order derivative exhibits the 
memory of the considered function’s history because when calculating the value of the fractional 
derivative at t, all the previous values of the function f t( ) must be used. For more details see [14]. 
The fractional calculus allowed the operations of integration and differentiation to all the complex 
orders. This fact allows us to consider the order of fractional derivatives as a function of time, space, 
or other variables, rather than a constant of arbitrary order [5], [10]. Samko et al. first proposed the 
concept of variable order operator and investigated the mathematical properties of variable order 
integration and differentiation operators of Riemann Liouville type [4]. there are principally two 
types of variable- order fractional derivative definitions, with the details about the two definitions 
given in [14]. Lorenzo and Hartley made some theoretical studies via the iterative Laplace transform 
and generalized different types of variable order fractional operator definitions [5].

In [15] the author studied the existence and uniqueness of a solution to an initial value problem for 
the following differential equation of variable order involving the Riemann Liouville derivative
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The authors in [11] studied the existence and Ulam-stability of solution of the following fractional 
order hybrid differential equations to the one with variable order involving the Caputo derivative
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Perturbation techniques are compelling in the study of nonlinear systems which are difficult to be 
studied and solved; however, the perturbation of such a problem allows us to study this problem and 
its characteristics. These techniques differ depending of the problem studied, where we find linear 
perturbation, quadratic perturbation, and implicit perturbation. For further details on these types 
of perturbations, see [17]. In this paper, we are interested in the study of a quadratic-ally perturbed 
problem, problems perturbed in this way are called hybrid differential equations. For more details 
on these types of these equations see [18], [17], [19]. We investigate the existence of solutions, on a 
sub-interval of J T= [ , ]0 , ( )T ��  for the following hybrid fractional differential equation involving 
ψ-Hilfer fractional derivative
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where 0 1� � �� �( ) ( )t t , 0 1� �� , � � � �( ) ( ) ( ( ))t t t� � �1 , �H tD0�
� � �( ), , (.) , �H tD0�

� � �( ), , (.)  denote ψ-Hilfer 
fractional derivatives of variable order α( )t , β ( )t  and type σ, f C J� �( , ) * , and h C J� �( , )  .

2. Preliminaries

Let J T= [ , ]0  be a finite interval of  . C J( , )  be the Banach space of continuous real function h 
with the norm � �h max h t t J� �{| ( )|: }. C Jn( , )  be the Banach space of n-times continuously differ-
entiable functions on J.

Let [ , ]a b  with ( )0 � � �a b �  be a finite interval and � �C a b1([ , ])  be increasing function such that 
� �� ( )t 0, � �t a b[ , ], we consider the weighted space:

C a b t a b t a t C a b1
1 1
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Let us recall some definitions and properties of fractional calculus.

Definition 2.1. [1] The left-sided ψ-Riemann-Liouville fractional integral of variable order 
� : [ , ] ( , )a b � ��0 , for an integrable function � : [ , ]a b �   with respect to another function � : [ , ]a b �  ,  
which is an increasing differentiable function such that � �� ( )t 0, for all t a b∈[ , ], ( )�� � � � ��a b , is 
defined as the following two types:
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where Γ(.) is the Euler gamma function defined by
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Definition 2.2. [1] The left-sided ψ-Riemann-Liouville fractional derivative of variable order 
� : [ , ] ( , ]a b n n� �1  with n � �[ ]� 1, for an integrable function � : [ , ]a b �   with respect to another 
function � : [ , ]a b �  , which is an increasing differentiable function such that � �� ( )t 0, for all t a b∈[ , ],  
( )�� � � � ��a b , is defined as the following two types:
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Definition 2.3. [13] The left-sided ψ-Caputo fractional derivative of variable order � : [ , ] ( , ]a b n n� �1  
with n � �[ ]� 1, for a function ��C a bn([ , ])  with respect to another function � : [ , ]a b �  , which is an 
increasing differentiable function such that � �� ( )t 0, for all t a b∈[ , ], ( )�� � � � ��a b , is defined as 
the following two types:

�C a
t

a
n t

n

a

t

D t I
t
d
dt

t s
�

�
�

�
�

�
�

�

�
� �

�� �� � � �

�
�( ); ( );( )

( )
( ) ( )(

� � �
1 �� �

�

�

�
( ) ( ))
( ( ))

( )
( )

[ ]t s
n t

s ds
n t

n�
�

� �1

�
� (8)

�C a
t

a
n t

n

a

t

D t I
t
d
dt

t s
�

�
�

�
�

�
�

�

�
� �

�� �� � � �

�
�( ); ( );( )

( )
( ) ( )(

� � �
1 �� �

�

�

�
( ) ( ))
( ( ))

( )
( )

[ ]t s
n s

s ds
n s

n�
�

� �1

�
� (9)

where � �� �
[ ]( )

( )
( )n

n

t
t
d
dt

t�
�

�

�
�

�

�
�

1 .
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We notice that, if the order α( )t  is a constant function p, we know there are some important prop-
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Lemma (2.2) is a semi-group property for the Riemann-Liouville fractional integral, which is very 
crucial in obtaining the Lemma (2.3) which allows us to determine the existence of the solutions of 
differential equations for the ψ-Hilfer fractional derivative. For general functions α( )t , ρ( )t , we notice 
that the semi-group property does not hold, i.e., I I h t I h tt t t t
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Example
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Lemma 2.5. Let X be a Banach space. A mapping A X X: →  is called a nonlinear contraction if 
there exists a continuous function � :  � ��  such that � � � �Ax Ay x y� � ��( ), for all x y X, ∈ , which 
�( )r r�  for r > 0. In particular if �( )r cr� , 0 1≤ ≤c , then A is called a contraction on X with contraction 
constant c.

Theorem 2.1. [3] Let S be a closed, convex, and nonempty subset of the Banach algebra X. Suppose 
that A B S X, : →  are two operators such that:

● Au Bv S� �  for all u v S, ∈ .
● A is a contraction on S
● B completely continuous on S.
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Then, the operator equation u Au Bu� �  has a solution in S.
The following results are necessary for the analysis of our main result.
Let � : [ , ] ( , )0 0 1T � , � : [ , ] ( , )0 0 1T � , and P T T T T T T TN� � ��[ , ],[ , ],[ , ],...,[ , ]0 1 1 2 2 3 1 . Thus, we define 
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3. Existence Results

In this partition, we prove the existence of the solution to the given problem (3). We first present the 
following important result through which we can prove our major results.

According to (12) and (13), the problem (3) can be written by

k

N

k

t

k k
I t s t s D u s

f s
k k

k

�

� �

� �
� �

� �
1 0

1

0( ) ( )( ( ) ( ))
( )

( )
(

,� � �
� �

� �
� �

� ,, ( ))
(( , ( )),���� [ , ]

( )

,
,�

�
�

�
k

k
u

u

k

N

k

s
ds h t t t T

I t

�

�
�
�

�

�
�
�

� 

�
�

0

1
(( ( ) ( )) ( )| ,����� � �t u t u uk

t� � 

�

�






	






�
�0 1
0 0 0 �

(14)
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Hence, the equation
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in the interval [ , ]0 1T  can be written by
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Again the Equation (15) in the interval [ , ]T T1 2  can be written by
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In the same way in the interval [ , ]T Ti i−1 , i N= 3 4, ,...,  ( )T TN =  the equation (15) can be written by
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Now, we are ready to state the definition of a solution to the problem (3), which is crucial in our work.

Definition 3.1. We say that the problem (3) has a solution, if there exists u C T1 1 11
0� �� �, ([ , ]) satisfying 

(16) and ( ( ) ( )) ( )|� � �t u t ut� ��
�0 1
0 0

1 ; u C T2 1 22
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2 ; 

u C Ti ii
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0 0 for ( , ,..., )i N= 3 4 .
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Lemma 3.1. Let f C J� �( , )*  , J T= [ , ]0  and h C J� �1 � �, ( , ) . Then the problem (3) has a solution 
given by
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in [ , ]0 2T .
Repeatly, in the interval [ , ]T Ti i−1 , ( , ,..., )i N= 3 4  we have
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, ( , ,..., )i N=1 2 .
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Proof. The idea of the proof is the same as that used in [9].
In the interval ( , ]0 1T  the problem (3) can be written by
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applying the ψ-Riemann-Liouville fractional integral operator I01�
� �;  on both sides of the problem (22) 

and using Lemma ( . )2 3 , we obtain:
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next, we evaluate the value of C using the initial condition. Multiplying ( ( ) ( ))� � �t � �0 1 1  on both sides 
of the equation (23), we get
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putting t = 0 in the above equation and using the initial condition, we obtain
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On the other hand, suppose that u(t) is the solution of the fractional integral equation (19). Then, it 
can be written as
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applying the � �Hilfer  fractional derivative operator �HD01�
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It remains to verify the initial condition. taking the limit t → 0 of the following equation:
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In the same way, in the interval [ , ]T Ti i−1 , ( , , ,..., )i N= 2 3 4  we have
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The proof is completed.
Next, we introduce the following assumptions:

● The function f C J� �( , ) *  is bounded and there exists a constant � � 0 such that for all p q, ∈,  
and t J∈  we have: | ( , ) ( , )| | |f t p f t q p q� � ��  and L is the constant such that | ( , )|f t p L≤

● The function h C J� �( , )   and there exists a function K C J� �1 � �, ( , )  such that:
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Clearly, Si  is a closed, convex and nonempty subset of X for all ( , ,..., )i N=1 2 .

Theorem 3.1. Assume that the assumptions ( )A1 , ( )A2 , ( )A3 , and ( )A4  hold. Then, the system of non-
linear ψ-Hilfer hybrid FDE (3) has a solution u C J� �1 � �, ( , )  provided:
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Proof. To obtain our main results, we start by performing the essential analysis of the problem (3).
Let v t D u tH i( ) ( )), ,�

�0
� � �  for all ( , ,..., )i N=1 2 , then according to the assumption ( )A3  and the lemma 

(2.3), we obtain

u t I v ti( ) ( );�
�0
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Then from the equation (21) we will consider the solution of the following integral equation
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that is, u*  is a solution of (21), with the condition ( ( ) ( )) ( )|� � �t u t ui
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Define the operators A X X: →  and B S X: 1 → , for t T∈[ , ]0 1  by:
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this gives:
� �( ( ) ( ))
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�1 1 10 1� � 

this implies, ( ( ) ( ))Av t By t S� � 1 for all v y S, ∈ 1.

Step 2: A is a contraction on S1 . Clearly from Assumption A1 and ( )A4 , we have
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Then, according to the condition (26) and Lemma (2.5) the operator A is a contraction on S1.

Step 3: B S X: →  is completely continuous:
● B S X: 1 →  is continuous
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By Lebesgue dominated convergence theorem, from the above inequality, we obtain:
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This proves that B S X: 1 →  is continuous.
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Using assumptions ( )A1  and ( )A2 , for any v S∈ 1 and t T∈[ , ]0 1 , we have:

|( ( ) ( )) ( )| |( ( ) ( )) ( , ( ));� � � �� � � �t Bv t t I f t v t I� � �� � �
�

0 01 1
0 0

1 1 1
��

�
� �

�

� �

� �

� � � �� �

�

1

1 1 1
1

1
00

;

;

( , ( ))|

( ( ) ( )) | ( , ( ))|

(

h t v t

T LI h t y t

(( ) ( ))
( )

,
, ([ , ], )

T L K C T
1

1

1 1
0

0
1

1 1 1

1 1 1

�
� �

� � �

�

�
� �

� � �

� ��
� � 

therfore

� � � �Bv T L KC T1 1 1

1 1 1

0
1

1

1 1

0
1�

�
�

� �

� � �

� �

� �
� �

� � �

, ([ , ], )
( ( ) ( ))

( ) � CC T1 1 10�� �, ([ , ], ) (28)



S. Zerbib, K. Hilal, A. Kajouni, Results in Nonlinear Anal. 6 (2023), 34–48. 46

this implies that B S Bv v S( ) { : }1 1� �  is uniformly bounded.
● B S( )1  is equicontinuous

Let any v S∈ 1 and t t J1 2, ∈  with t t1 2< , then using hypothesis ( )A1  and ( )A2 , we have
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by the continuity of ψ, from the above inequality it follows that:
If | |t t1 2 0� �  then |( ( ) ( )) ( ) ( ( ) ( )) ( )|� � � �� �t Bv t t Bv t2

1
2 1

1
10 0 01 1� � � �� �  From the parts (ii) and (iii), 

it follows that B S( )1  is uniformly bounded and equicontinuous set in X. Then by Arzela-Ascoli theo-
rem, B S( )1  is relatively compact. Since B S X: 1 →  is the continuous and compact operator, it is com-
pletely continuous.

So from steps 1 to 3, it follows that all the conditions of Theorem (2.1) are fulfilled. Hence operator 
T has a solution in S1.

This implies that the system of hybrid FDE (3) has a solution in C T1 11
0�� �, ([ , ], ) .

As a result, according to the arguments above, u t I v t( ) ( )� �0
1�  is a solution to the problem (3). In a 

similar way, for all i N N= 2 3, ,... , , ( )T TN = , we obtain that the problem (3) has a solution u t I v ti( ) ( )� �0
�  

in C T
i i1 0�� �, ([ , ], ) .

4. Example

In this section, we give an example that is relevant to demonstrate our results. We consider the par-
ticular case when � ( )t t�  and � �1.

Consider the ψ-Hilfer hybrid FDE involving Caputo fractional derivative.
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Let v t D u tC t( ) ( )( )�
�0
� , then f t v t v t( , ( )) ( ( ))� �12
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Now we check for condition (26). Then for all (i = 1, 2, 3), we have
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we observe that all the conditions of Theorem (3.1) are satisfied. Therefore, the system ψ-Hilfer hybrid 
FDE involving Caputo fractional derivative (29) has a solution u t I v tt( ) ( )( )� �0

�  in C([ , ])0 3 , such that
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where v t D u ti
C

i
i( ) ( )�
�0
� , for all ( , , )i =1 2 3

5. Conclusion

This work introduces the concepts of variable order fractional integration and differentiation where 
the order is a function of time t. We have established existence theory on solutions of the system of 
hybrid fractional differential equation of variable order involving ψ-Hilfer fractional derivative by 
using the Krasnoselskii fixed point theorem. Also, we presented an example to illustrate our main 
results.
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