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Abstract
In this paper, we consider convolution operator 

zD h z h z z
z z 

( ) = ( )
(1 )(1 )

�
� �

and define a new differential operator Dm
λ ,  on the analytic functions in the complex plane, for all  , 

 ≤1 . Furthermore, we consider this operator Dm
λ ,  and then define two new integral operators. We 

discuss some interesting applications of these operators by introducing several new subclasses of ana-
lytic functions. Also geometric properties are investigated for integral operators on new subclasses of 
analytic functions and some subordination results are discussed for differential operator Dm

λ , .
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1. Introduction and Definitions

Let ( )∇  represents the space of holomorphic functions in open unit disc � �� �= : <1 .z z  Let 

n n
nh H h z z a z= ( ) : ( ) = ... .1
1� � � �� ��
�
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For n =1, then  1 = . The class   is a subclass of  , and every h∈  has a series of the form:

T A= : ( ) = , .=2h h z z a z zj j
j� � ��� ��

Let the class �( )�  of starlike functions of order α , 0 <1� �  is given by

S A� �
��

�
�

�

�
�

�
�
�

�
�
�

( ) = : ( )
( )

> .� �h Re zh z
h z

For α = 0 , then  � �( ) =� .
Let the class ( )α  of convex functions of order α , 0 <1� �  is given by

C A( ) = : ( )
( )

> .� �h Re zh z
h z

�
� �
�

�

�
�

�

�
�

�
�
�

�
�
�

( )

For α = 0 , then  ( ) =α .
The convolution of the functions h, g ∈, is define by

( )( ) = , ,=2h g z z a b z zj j j
j� � ���

where

g z z b zj j( ) = =2��

and

h z z a zj j( ) = .=2�� (1.1)

Let the subordination [1] of two analytic functions h and g in ∇ , (written as h g ), if there exist an 
analytic function w in ∇ , along the following conditions 

w w z(0) = 0, ( ) <1and

for all z��, such that 

h z g w z( ) = ( ( )).

If for any univalent function g, then 

h g

if and only if 

h g(0) = (0)

and 

h g( ) ( ).� � �

Let � : 3 �� � , and ϕ  be a univalent and p is analytic in ∇  and satisfies the second-order differ-
ential subordination

� �( )p z zp z z p z z z z( ), ( ), ( ); ( ), ,2� �� �� for (1.2)

then, p is called a solution of the differential subordination (see [1]). If p r  for all r fulfilling (1.2), 
then the univalent function r is said to be a dominant of the solutions of the differential subordination, 
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or just a dominant. The best dominant of (1.2) is a dominant that fulfils r  for all dominants r . The best 
dominant is unique up to a rotation of ∇.

The area of study of differential and integral operators has got the thoughtful attention of research-
ers due to many applications in various branches of mathematics. The field of study connecting with 
differential and integral operators is the hot topic for the researchers in the field of study on analytic 
and univalent functions. In 1951, Alexander [2] was the first who introduced integral operator. After 
that, Libra introduced Libra integral operator [3] while in [4] Livingston invented differential oper-
ator and still different type of differential and integral operators are introducing by the researchers 
see [5–10]. The invention of Salagean and Ruscheweyh operators play significant role in the field of 
mathematics as well as in Geometric Function Theory (GFT). Many researchers [11–14] discussed 
their applications and used it to defined many new subclasses of analytic, meromorphic and harmonic 
functions. Recently, researchers are started to involve the quantum calculus to discuss many new 
applications of differential and integral operators and they are producing remarkable outcomes which 
can apply to other areas of mathematics and physics. In article [15], author points out interesting 
applications of operators. Jackson [16] was first who brought the q-extension of ordinary derivative 
and introduced the q-derivative and q-integral operator and numerous mathematicians have dis-
cussed their applications from different point of view. Recently, number of researchers have investi-
gated extensions of previously known operators, like Govindaraj and Sivasubramanian [17] gave the 
q-extension of Salagean differential operator and Kanas and Raducanu [18] used the basic concepts 
of q-calculus and gave the q-extension of Ruschewey operator and q-extension of other operators are 
investigated in [19–24]. Since operators are use to the study of differential equations by means of 
operator theory and functional analysis. In [25], number of integral operators have been introduced 
connected with the Lommel functions of the first kind and also derived various interesting mapping 
and geometric properties for the integral operators. Particularly, these integral operators play a very 
useful role in the study of pure and applied mathematical sciences. On this line of investigation, we 
introduced two new integral operators in this paper by using the newly defined differential operator 
Dm

λ , .
Let q∈ (0,1)  and � �, the q-number defined as: 

[ ] [ ]

[ ]

x q
q

x

n q q q x n

q

x

q

q
n

= 1
1

, 0 = 0, ,

=1 ... , = .2 1

�
�

�

� � � � ��

C

N

Jackson [16] defined the q-derivative operator ( )Dq  for analytic functions h as follows: 

D h z h z h qz
q z

z q

j a z

q

j
q j

j

( ) = ( ) ( )
(1 )

, 0,0 < <1,

=1 [ ] .
=2

1

�
�

�

�
�

��
(1.3)

Also Jackson [26] defined the q-integral for the function h as follows:

h z d z q z h q z qq
j

j j( ) = 1 .
=0

( ) ( )�
�

�

Argawal and Sahoo considered q-derivative in [27] and defined a new class q
�( ).�  Let an analytic 

function h q� �� ( ),0 <1� � , if

zD h z
h z

q
q q

q ( )
( )

1
1

1
1

.�
�
�

�
�
�

� �
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Remark 1.1: If q � �1 , then  q
� �( ) = ( )� � . 

Remark 1.2: If α = 0 , the class  q q
� �( ) =� , studied by Ismail et al. in [28]. 

Here, for complex number  ,  ≤1, we consider convolution operator 

zD h z h z z
z z 

( ) = ( )
(1 )(1 )

�
� �

(1.4)

= 1
1

= 1
1

=

=1 =1

=2

=2

j j
j

j

j
j

j

j

j
j

j j
j

a z z

z a z

z j a z

� �

�

�

�
�
�

�
�
�

� �� ��








,,

(1.5)

where

j
j

�� ��
�
�




= 1
1

.

Take  = q in (1.5), then we have q-derivative D hq  and is a special case of the convolution operator 
(1.4).

Now considering the operator zD h z ( ), we define a new differential operator Dm
λ ,  on the analytic 

functions in the open unit disk ∇ .

Definition 1.3: For � � �0, ,m    ∈,  ≤1  and h∈, the operator Dm
� , : ,� A A�  is defined by

D h z h z

D h z h z zD h z D h z

D

�

� �

�

� �
,
0

,
1

,

,

( ) = ( ),

( ) = 1 ( ) ( ) = ( ),


  



( )� �



mm m m

m

h z D h z zD D h z

D D h z z

( ) = 1 ( ) ( )

= ( ( ),

1 1

, ,
1

( ) ( )� �

��

� �

�

� �

� �

  

  ..

(1.6)

After some simple calculation of (1.4), (1.1) and (1.6), then we have

D h z z j a zm
j

m
j
j

� �, =2( ) = 1 1 . � � �� ( ([ ] ) )

If h z z a zj j
j( ) = =2��  ∈ , then we have

D h z z j a zm
j

m
j
j

� �, =2( ) = 1 1 . � � �� ( ([ ] ) )

The following identity can also be verified:

D h z D h z z D h zm m m
� � � � �

� �
,
1

, ,( ) = 1 ( ) (





 
� �

�

�
�

�

�
� �

�

�
�

�

�
�

[ ] [ ] ( )) .�) (1.7)

Remark 1.4: If h z z a zj j
j( ) = =2��  ∈, then we can also write

D h z z j a zm
j

m
j

j
� �, =2

2( ) = 1 1 � � �� ( ([ ] ) )

and if h z z a zj j
j( ) = =2��  ∈ , then 

D h z z j a zm
j

m
j

j
� �, =2

2( ) = 1 1 . � � �� ( ([ ] ) )



Ahmad N, Results in Nonlinear Anal. 6 (2023), 97–115. 101

Remark 1.5: If  =1, then we obtain Al-Oboudi-differential operator [29]. 

Remark 1.6: If λ =1, and  = ,q  then we get Salagean q -differential operator [17]. 

Remark 1.7: If λ =1,  =1 , then we have Salagean differential operator [30]. 
In this paper, the new differential operator Dm

λ ,  is defined, and then using the operator Dm
λ ,  given 

in the Definition 1.3 two new integral operators are introduced. Considering these newly defined 
operators, some new classes of analytic functions are formulated. Related to the new integral opera-
tors two new lemmas are proved which will be used to prove our main results. Next, we provide some 
theorems including the conditions for functions in class   and show the connection between new 
operators and newly defined classes. In the last, we used the best dominants of certain differential 
subordinations, we proved subordination results, which are the extended forms of Theorem 2.3 and 
Theorem 2.4.

Using the operator D h zm
λ , ( ) , we now define two new integral operators.

Definition 1.8 Let integral operators F
l

m
� � � �, 1, 2,...
,  and G

l
m
� � � �, 1, 2,...
,  for functions hi ∈ , � i �, i l�� �1,2,3..., , 

are define as follows:

F
D h t

t
D h t

tl
m z

m m
l

� � � �
�

�

�
, 1, 2,...
,

0
, 1

1
,=

( )
...

( )  
�

�
��

�

�
��

�

�
���

�

�
��

� l

dt, (1.8)

and 

G
D h t

t
D

l
m z

m

� � � �
�
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�
, 1, 2,...
,

0
, 1

1

,=
( )

... 
�

�
��

�

�
��

��

�

�
�
�

�

�

�
�
�


m
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l

h t
t

dt
( )

,
�

�
��

�

�
��

��

�

�
�
�

�

�

�
�
�

�

(1.9)

where, � � 0,  ≤1, m∈, z��.

Remark 1.9 For λ = 0, m = 0,  =1, in (1.8) then we have integral operator investigated in [31] and 
for λ =1, m = 0,  →1, in (1.9) then we have integral operator investigated in [32]. 

Considering the differential operator Dm
λ ,  and the integral operators F

l
m
� � � �, 1, 2,...
,  and G

l
m
� � � �, 1, 2,...
, ,  we 

define some new classes of analytic functions h∈ .

Definition 1.10: The class R �( )δ , , δ >1, of the functions h∈  which satisfy the inequality

Re
z D h z
D h z

z
m

m

( )�

�

�,

,

( )
( )

< , .



��

�

�
�

�

�

�
�

��

Definition 1.11: The class C �( )δ , , δ >1, of the functions h∈  which satisfy the inequality

Re
z D h z
D h z

z
m

m
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< , .,

,

�
��

�

�

�

�
�

�

�

�
�

��
( )
( )

�

�

�



Definition 1.12: The class RA �( )� �, , , 0 <1,� �  0 < 1,� �  of the functions h∈  which satisfy the 
inequality

� � �
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z D h z
D h z

m

m

m

m

( ) ( ),
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Definition 1.13: The class CA �� � � �, , ,0 <1,0 < 1,� � � �  of the functions h∈  which satisfy the 
inequality

� � �

�

�1
( )
( )

1 >
( ),

,

,�
��

�

�

�
��

�

�
�� �

��z D h z
D h z

z D h z
D

m

m

m( )
( ))

( )
(







�� , ( )
, .


m h z

z
�

��
)

Definition 1.14: The class LAF �( )� � � � � �, , , , ,1, 2,... l  � � 0, � � 0, and � � �1 1�  contains the functions 
hi  i l∈ {1,2,... }  which satisfy

� �
� � � �

� � � �

z F z

F z

l
m

l
m

, 1, 2,...
,

, 1, 2,...
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( )

( )




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�
�
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� �
Re

z F z

F z
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l
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1
( )
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,

, 1, 2,...
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� � � �

� � � �


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�
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��, ,z

where, F z
l

m
� � � �, 1, 2,...
, ( )  is defined in (1.8). 

Definition 1.15: The class LAG �( )� � � � � �, , , , ,1, 2,... l  � � 0, � � 0, and � � �1 1�  contains of the func-
tions hi , i l∈ {1,2,... }  which satisfy the inequality

� �
� � � �

� � � �

z F z

F z

l
m

l
m

, 1, 2,...
,
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
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�
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� ��
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�

Re
z G

G

l
m

l
m

1
, 1, 2,...
,

, 1, 2,...
,

� � � �

� � � �



��

�

�

�
�
�
�

��, ,z

where, G z
l

m
� � � �, 1, 2,...
, ( )  is defined in (1.9). 

2. Lemmas

Here, we state some known lemmas and also prove two new lemmas that will help to prove our main 
results of this article.

Lemma 2.1: [1]. Let p  is univalent in ∇  and let φ  be an analytic in domain containing p( )∇ . If

zp z
p z

'
( )

( ( ))φ
(2.1)

is starlike, then

z z z zp z p z z� � ��� � � �( ) ( ( )) ( ) ( ( )), , (2.2)

then,

ψ ( ) ( ),z p z

and p z( ) is the best dominant. 

Lemma 2.2: [33]. Let s and p are analytic in ∇  and p is convex univalent, for complex number � �,  
and γ  and � � 0. Further let

Re p z zp z
p z

�
�

�
�

� � �
���

�
�

�

�
�

�

�
�

�

�
�

2 ( ) 1 ( )
( )

> 0.
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If an analytic function s z c z( ) =1 ....1+ +  in ∇  and satisfies 

� � � � � �s z s z zs z p z p z zp z( ) ( ) ( ) ( ) ( ) ( ),2 2� � � � � �


then,

s z p z( ) ( ).

Also p z( ) is the best dominant. 

Theorem 2.3: [34]. For 0 < 1,� �  let p  be convex univalent and

Re p z zp z
p z

1 2 ( ) 1 ( )
( )

> 0.�
� � �

���

�
�

�

�
�

�

�
�

�

�
�

�
�

If h∈  satisfies

zh z
h z

z h z
h z

p z p z zp z�
�

��
�

� � � �( )
( )

( )
( )

1 ( ) ( ) ( ),2 2� � � � ( )

then

zh z
h z

p z′( )
( )

( ).

Also p z( ) is the best dominant. 

Theorem 2.4: [34]. Let �( ) = ( )
( )

z zp z
p z
�  is starlike univalent in ∇  and p  is analytic in ∇  and p(0) =1 . If 

h∈  satisfies the following subordination

( )zh z
h z

zh z
h z

z( )
( )

2 ( )
( )

( )
��

�
�

�
 �

then, 

z h z
h z

p z
2

2
( )
( )

( ).′


Also p z( ) is the best dominant. 

Lemma 2.5: For h z z a zi j i j
j( ) = ,=2 ,��  i l∈ {1,2,... ), then we have
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l
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where, F z
l

m
� � � �, 1, 2,...
, ( )  is defined in (1.8). 

Proof. For h z z a zi j i j
j( ) = ,=2 ,��  i l∈ {1,2,... ), then

( )) [ ] { ([ ] ) } ( )D h z j j a zm
i j

m
i j

j
� �, =2 ,

2 1( =1 1 1 .  
�� � � �� �
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We obtain

F z
D h z

z
D h z

l
m

m m
l

� � � �
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�
, 1, 2,...
, , 1

1
,( ) =

( )
...
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Lemma 2.6: For h z z a zi j i j
j( ) = ,=2 ,��  i l∈ {1,2,... ), then we have
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where, G z
l

m
� � � �, 1, 2,...
, ( )  is defined in (1.9). 

Proof. For h z z a zi j i j
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so
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3. Main Results

Sufficient conditions for hi l�LAF �( )� � � � � �, , , ,1, 2,...  and hi l�LAG �( )� � � � � �, , , , ,1, 2,...  where

� � �� � � � �0, 0, 1 1.

Theorem 3.1: Let hi ∈ , i l�� �1,2,3... . Then hi l� � �LAF �� � � � � �, , , ,1, 2,...  if and only if
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where, � � 0, � � �1 1.�
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which is equivalent to
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when z � �1  along the real axis, we deduce the inequality (3.1). 
If we take χ = q  (0 < <1),q  then we obtain a new result, which is given below in the form of a 

corollary.
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where, � � 0, � � �1 1.�  
Using the technique of the proof of Theorem 3.1, and Lemma 2.6, we obtain the Theorem 3.3.
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where, � � 0, � � �1 1.�  
Now we prove some properties of the integral operators F z
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Let l =1, γ γ1 = , δ δ1 =  and h h1 =  in Theorem 3.4, we obtain the following corollary.
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� � � ��� � �=1 1 , .( ) z
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� � � ��� � �=1 ( 1), .=1i
l

i i z
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Since δi >1, evidently i
l

i i=1 ( 1) > 0� � �  and hence G z
l

m
� � � � �, 1, 2,...
, ( ) ( ),� D� �  with 
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� � � ��� � �=1 ( 1), .=1i
l

i i z

Letting l =1, γ γ1 = , δ δ1 =  and h h1 =  in Theorem 3.8, we obtain the corollary.

Corollary 3.9 Let γ > 0, h�( )�  with δ >1. Then 0 ( ) ( ) ( ),z h t d t( )� � �� �  where 

� � � ��� � �=1 1 , .( ) z

Theorem 3.10: Let � i �, � i i l> 0, {1,2,3... },�  hi i i� � �DA �� �, ,  and 
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i i i iM z( )

Proof. From the definition of G
l

m
� � � �, 1, 2,...
,  given by (1.9), we have
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As 

i
l

i i i iM=1 (1 ) 1 > 0,� � � � ��� ��

we conclude that 

G z
l

m
� � � � �, 1, 2,...
, ( ) ( ),� D� �

where 

� � � � ��� � � �=1 (1 ) 1 , .=1i
l

i i i iM z[ ]

If we take χ = q  (0 < <1),q  then we obtain a new result, which is given below in the form of a corollary.

Corollary 3.11: Let � i �, � i i l> 0, {1,2,3... },�  h qi i i� � �DA � �, ,  and 
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m
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, ( ) ( ),� D� �  where 

� � � ��� � � �=1 1 , .=1i
l

i i i iM z( )

Letting l =1, γ γ1 = , M1 =1 and h h1 =  in Theorem 3.10, we have following corollary.
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Corollary 3.12: Let � �,  γ > 0, h� � �DA �� �, ,  and ′′
′
h z
h z

M( )
( )

< , where M  is fixed, then 

0 ( ) ( ) ( ),z h t d t( )� � �� �  where 

� � � � ��� ���=1 (1 ) 1], .M z

3.1 Subordination Results

Theorem 3.13: Let ϕ  be convex and univalent, � � 0 and

Re z z z
z

1 2 ( ) 1 ( )
( )

�� �
�� ��

�
�� ��

� �
��
�

�

�
�

�

�
�

�
�
�


�

�
�



	 
 	

�
�
�

	 	 

 

��

��
> 0.

If h∈  satisfies the differential subordination
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and ϕ  is best dominant.

Proof. Consider
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Using (1.7) in (3.6), we have
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So
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Also ϕ  is the best dominant. 
If we take χ = q  (0 < <1),q  then we obtain a new result, which is given below in the form of a 

corollary.

Corollary 3.14: Let ϕ  be convex and univalent, � � 0 and
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If h∈  satisfies the differential subordination

D h z
D h z

D h z
D h z

q
m

q
m

q
m

q
m

�

�

�

�

� �,
1

,

,
2

,
1

( )
( )

( )
( )

1
� �

�

�

�
�
�

�

�
�
�
� �

�

�
�
��

�

�
�
�

� � � �
 ( )

[ ]
1 ( ) ( ) ( ),2� � ��

� �
��z z

q
z zq

then

D h z
D h z

z zq
m

q
m
�

�

�,
1

,

( )
( )

( ), ,
�

��

where ϕ  is the best dominant. 

Theorem 3.15: Let ϕ  be univalent in ∇, and z z
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and ϕ  is best dominant.
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and ϕ  is the best dominant. 



Ahmad N, Results in Nonlinear Anal. 6 (2023), 97–115. 114

If we take χ = q  (0 < <1),q  then we obtain a new result, which is given below in the form of a 
corollary.

Corollary 3.16: Let ϕ  be univalent in ∇, and z z
z

'
ϕ
ϕ
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( )

 be univalent and starlike in ∇ , �(0) 0� , � � 0 If 
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and ϕ  is best dominant. 

4. Conclusion

The integral and differential operator theory is a broad discipline that has applications in many 
branches of mathematics and physics, as well as in other fields, such as quantum group theory, ana-
lytic number theory, numerical analysis, special polynomials, fractional calculus, and other related 
theories. The special functions and orthogonal polynomials have played a important role in mathe-
matics, engineering, physics, and other research disciplines in recent decades.

In this study by introducing the new operator Dm
λ , , two new integral operators F z

l
m
� � � �, 1, 2,...
, ( )  and 

G z
l

m
� � � �, 1, 2,...
, ( )  are defined. Considering these operators, some new classes of functions are introduced 

and studied. The integral operators are also considered on newly defined classes R �( )δ , , C �( )δ , , 
RA �( )� �, , , CA �( )� �, , . Using the operator Dm

λ ,  some subordination results have investigated for 
class   and these subordination results are the extended form of Theorem 2.3 and Theorem 2.4. If we 
take  = q in (1.4), (1.6), (1.8) and (1.9), then we can obtain q-analogous of differential and integral 
operators and then all the results that are investigated in this article can be easily translated into 
q-calculus theory.

With the help of differential and integrals operators, we can study differential equations from 
the perspectives of operator theory and functional analysis. The operator method is a technique for 
solving differential equations that makes use of the properties of differential operators. In the future, 
research might be done to see whether these operators can be employed to provide solutions to PDEs. 
These newly developed operators might be explored for potential applications in the physical sciences 
or other applied disciplines. Further, we can define these classes with the help of fractional deriva-
tives and other mathematical operators.

For future work, interested readers can organized several interesting subclasses of analytic, uni-
valent, bi-univalent, q-valent and meromorphic functions by using the newly introduced integral and 
differential operators of this paper. Also, the symmetry properties of this newly introduced operator 
can be studied in future research directions.
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