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Abstract
In this paper, we define a new class RH

0, , ,� � ( )L M  of normalized harmonic functions in the unit disk 
U z z= : <1{ | | }∈�  which satisfy the following third-order differential inequality
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where, � �� � 0 , 1 < 1� � �L M  and M ≠ 0 . First of all, we prove one-to-one correspondence between 
class R�

� ( )L M,  of analytic functions and class RH
0, , ,� � ( )L M  of harmonic functions. Next, we prove that 

every function f L M�RH
0, , ,� � ( ) is closed-to-convex in open unit disk U. Furthermore, we investigate 

various properties of the this class RH
0, , , ,� � ( )L M  such as coefficient bounds, growth estimates, suffi-

cient coefficient condition. We establish that class RH
0, , ,� � ( )L M  is closed under convex combination 

and convolution. We involve Gaussian hypergeometric function to discuss some applications of newly 
defined class of harmonic functions and construct harmonic polynomials which belong to the consid-
ered class RH

0, , ,� � ( ).L M  We explore some new and known lemmas to prove our main results.
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1. Introduction and Definitions

Let H denote the class of functions of the form � = s u�  which are harmonic in the open unit disk 
U z z= : <1{ | | }∈�  and normalized by

� �(0) = (0) 1 = 0.z �

Every function � = s u� �H  can be written in the series of the form:

� ( ) = ,
=2 =1

z z a z b z
l

l
l

l
l
l� �

� �

� �

where

s z z a z u z b z
l

l
l

l
l
l( ) = , ( ) = ,

=2 =1
�

� �

� �and (1.1)

where s and u are analytic functions.
The harmonic function ξ  is locally univalent in U if and only if its Jacobian

J z z zz z� � �( ) = ( ) ( )2 2
�

is non-zero in U, (see [1]) and harmonic function ξ  is sense preserving in U if ′ ′s z u z( ) > ( ) , (see [2, 3]).
Let A  denote the set of all analytic functions in U and normalized by

� �(0) = (0) 1 = 0.� �

Let S  be the subclass of A  which contains set of all univalent functions. The starlike functions 
( )S∗ , convex functions (K), and close-to-convex functions (C) are the subclasses of class S  and 
these classes map unit disk U onto starlike, convex, and close-to-convex domains. The set of all 
functions that are univalent, harmonic and sense-preserving in U are denoted SH and also we can 
write as:

H H S SH H
0 0: (0) = 0 = : (0) = 0 .� � �{ } { }� � � �z zand

The harmonic starlike functions ( )0SH
,* , harmonic convex functions ( )0KH , and harmonic close-to-con-

vex functions ( )0CH  are the subclasses of class SH
0 .

Note that

A H S SH⊂ ⊂and 0 ,

and

S SH H H
� �� � �0, 0 0, .K K C Cand

If co-analytic part u z( ) = 0 , then H0  reduces to class of analytic functions A  and SH
0  reduces to the 

set of univalent functions S . Similarly if u z( ) = 0, then the well known subclasses SH H
0, 0,∗ K  and CH

0  of 
harmonic functions reduces to subclasses S∗ , K and C of univalent function class S .

Ponnusamy et al. [3] defined a class of harmonic function � �H0 and satisfies the following 
condition

Re z z z Uz z( ) | |� �( ) > ( ) ., �
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Furthermore, Li and Ponnusamy [4, 5] discussed univalent criteria and convexity of the partial sums 
for this class. Nagpal and Ravichandran [6] investigated a class of harmonic functions WH

0 , which 
satisfy the condition

Re s z zs z u z zu z z U( )� � �� � � �� �( ) ( ) > ( ) ( ) , .

The class WH
0  is harmonic analogue of the class W  defined in [7] for � �A  and satisfy the condition

Re z z z z U( )� � �� �� �( ) ( ) > 0, .

In 2019, Ghosh and Vasudevarao [8] gave the generalizations of class WH
0  and introduced a new class 

WH
0( )δ  of harmonic close-to-convex functions which satisfy the following condition

Re s z zs z u z zu z z U( )� � �� � � �� �( ) ( ) > ( ) ( ) , .� �

They found some useful properties for this class such as, radius of convexity, coefficient bounds and 
growth estimates. After that, Rajbala and Prajapat [9] gave the generalizations of WH

0( )δ  and defined 
a new class WH

0( , )� �  of harmonic functions � = 0s u� �H  which satisfy the second-order differential 
inequality:

Re s z zs z u z zu z z U( )� � �� � � � �� � � �( ) ( ) > ( ) ( ) , 0,0 <1, .� � � � �

For this class, they produced harmonic polynomials involving Gaussian hypergeometric function. 
Very recently, Yaşar and Yalçın [10] defined the class RH

0 ( , )� �  of harmonic functions which satisfy 
the third-order differential inequality:

Re s z zs z z s z u z zu z z u z( )� � �� � ��� � � �� � ��� �( ) ( ) ( ) > ( ) ( ) ( ) ,2 2� � � � � �� � 0.

They investigated that any function � � ��RH
0 ( , ) is close-to-convex. Moreover, they constructed coeffi-

cient bounds, growth estimates, sufficient coefficient condition, and convolution properties. For more 
study (see [11, 12, 6, 13]).

Motivated by the work of Yaşar and Yalçın [10], Rajbala and Prajapat [9], we define a new classes 
of analytic and harmonic functions in U.

Definition 1.1: Let R�
� ( )L M,  denote the class of functions � �A  and satisfy the condition

Re z z z z z L
M

( )� � � � �� ��

�
�

�

�
�� � � � �( ) ( ) ( ) > 1

2
,2 (1.2)

where, � �� � 0 , 1 < 1� � �L M  and M ≠ 0.

Definition 1.2: Let RH
0, , , ,� � ( )L M  denote the class of functions � = 0s u� �H  which satisfy the following 

third order differential inequality:

Re s z zs z z s z L
M

u z zu� � �� � ��� �
��

�
�

�

�
�

�

�
�

�

�
� � � ��( ) ( ) ( ) 1

2
> ( ) (2� � � zz z u z) ( ) ,2� ���� (1.3)

where, � �� � 0 , 1 < 1� � �L M  and M ≠ 0.

Remark 1.3: The class R RH�
� � �( ) ( )L M L M, , .0, ,�

Special cases:
 1. R WH H

0 1 0 01 1 = ,, , ( , )−  studied by Nagpal and Ravichandran in [6].
 2. R WH H

0 0 01 1 = ,, , ( , ) ( )� ��  defined by Ghosh and Vasudevarao in [8].
 3. R WH H

0, ,0 01 2 1 = , ,� � � �( , ) ( )� �  introduced by Rajbala and Prajapat in [9].
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Definition 1.4: Let a nonnegative real numbers sequence { }ql l=0
∞  is called convex null sequence, if tl → 0 

as l ��, and

t t t t t t t tl l0 1 1 2 2 3 1... ... 0.� � � � � � � � � ��

Definition 1.5: Goodloe [14] defined the convolution (or Hardamard product) of a harmonic function 
� = s u�  as follows:

� � � �� � � �= ,s u

where, φ  is an analytic function.

Definition 1.6: [15]. The subordination of two analytic functions s1 and s2 can be written as:

s z s z1 2( ) ( ).≺

If there exists v∈A,  along with the condition

v v z(0) = 0, ( ) <1and

for all z U∈ , such that

s z s v z1 2( ) = ( ( )).

Furthermore, if the s2 is univalent in U, then we have

s z s z s s s U s U1 2 1 2 1 2( ) ( ) (0) = (0) ( ) ( ) .≺ � �{ }and

Definition 1.7: The Gaussian hypergeometric function defined as:

2 1
=0

, , ; = ( , , ; ) =
!

, ( ),F c d e z F c d e z c d
e l

z z U
l

l l

l

l( ) ( ) ( )
( )

�

� � (1.4)

where, c d e, , ,∈�  e � � �0, 1, 2,..., and Pochhammer symbol ( )c l  defined as:

( ) ( )( ) ( )c c c c c ll = 1 2 ... 1� � � �

and

( )c 0 =1.

If Re e c d( )− − > 0, then F c d e z( , , ; ) is convergent in | |z ≤1. For z =1, we get well-known Gauss for-
mula given in [16] and defined as follows:

F c d e e e c d
e c e d

( , , ;1) = < .� �
� �
( ) ( )
( ) ( )

� �
� �

� (1.5)

In this paper, we define a new class RH
0, , ,� � ( )L M  of functions � = 0s u� �H  which satisfy the third- 

order differential inequality. In section 2, we construct some new and known lemmas, which will be 
used to derive our main results. In section 3, first, we provide a one-to-one correspondence between 
the classes R�

� ( )L M,  and RH
0, , ,� � ( )L M  and then we obtain coefficient bounds, growth estimates, and 

sufficient condition for the class RH
0, , ,� � ( )L M . We also prove that this class is closed. In fourth section, 

we involve the Gaussian hypergeometric function and construct harmonic polynomials which belong 
to the considered class RH

0, , ,� � ( ).L M
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2. Lemmas

The following lemmas will be used to prove our main results.

Lemma 2.1: [2]. Let T � �= s u�  is close to convex, for each µ µ(| | )=1 , and | | | |′ ′s u(0) < (0) . Then � = s u�  
is close to convex in U. Where, s and u are analytic in U.

Lemma 2.2: ([17, 18]). Let φ( )z  be analytic in U with Cl ≠ 0 and defined by

�( ) = ...1
1z C z C zl

l
l

l� ��
�

and let z0 0,≠  z U0 ∈ , such that

� �( ) = ( )0
0

z z
z z�
max

then, there is n∈�, n l≥ ≥1, such that

z z
z

n0 0

0

( )
( )

=
��

�

and

Re z z
z

n1 ( )
( )

.0 0

0
�

��
�

�

�
�

�

�
� �

�
�

Lemma 2.3: If T R� �
� ( )L M,  with � �� � 0  and 1 < 1,� � �L M  M ≠ 0. Then

Re z( )′T ( ) > 0,

hence, T  is close-to-convex in U.

Proof. Let T R� �
� ( )L M,  and

� � �� � ��� �
��

�
�

�

�
�T T T( ) ( ) ( ) 1

2
= ( ).2z z z z z L

M
z� � �

Hence, we can observe that Re z( )Ψ( ) > 0, for z U∈ .
Let for analytic function φ  in U with the condition

φ(0) = 0

and

� �
�

�T ( ) = 1 ( )
1 ( )

, ( ) 1.z z
z

z�
�

�

Now we have to show that �( ) <1z z U,� � . For this we take

�( ) = ( ) ( ) ( ) 1
2

.2z z z z z z L
M

� � �� � ��� �
��

�
�

�

�
�T T T� �

After some simple calculation, we have

�( ) = 1 ( )
1 ( )

2 ( )
1 ( )

2 ( ) 1 ( ) 2 (
2z z

z
z z
z

z z�
�

�
�

�
�
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�
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�
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( ) ( zz
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and

�( ) = 1 ( )
1 ( )

2 ( )
1 ( )

2 ( )
1 ( )2 2z z

z
z z
z

z z
z

�
�

�
�

�
�

�

�

�

�
�

�

�

�
�

� �
�

�
�
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�

�
�

�
�

��

�
�

�

�
�

z z
z

z z
z

L
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�
�

�
�
�

( )
( )

4 ( )
1 ( )

1
2

.
2

3
( )
( )

Since φ  is analytic in U and φ(0) = 0 , if there is z U0 ,∈  such that

| | | |
max
z z

z z
� 0

0| ( )|=| ( )|=1.� �

Therefore, by using the Lemma 2.2, we have

� � � � �� �( ) = , ( ) = ( ) = ( 1,0 < < 2 )0 0 0 0z e z z n z ne ni iand ,� �

and

Re z z
z

n0 0

0

( )
( )

1.
��
�

�

�
�

�

�
� � �

�
�

For the point z U0 ∈ , we obtain

Re z Re e
e

ne
e

ne
e

z zi

i

i

i

i

i�( ) = 1
1

2
1

2
1

(
0 2 2

0 0�
�

�
�

�
�

���

�

�

�

�

�

� � �
( ) ( )

))
( )

4
1

1
2

=
1

0

2

3�
�

�
�

�

�
� �

�
�

��

�
�

�

�
�

�

�
��

�

�
��

�
�

�
�

�

�

�z
ne
e

L
M

n

i

i
( )

( )

ccos ( cos ) ( cos )�
�

�
�
�

�
�

�
�

��
�

�

�
�

�

�
� �

�
�

��n Re z z
z

n L
M1

( )
( ) 1

1
2

0 0

0

2

��
�

�

�
�

�
�

�
�

� �
�

�
��

�
�

�

�
�

� �

=
1 1

1
1

1
2

2�
�

�
�

�
�

n n n n L
Mcos ( cos )

( )
( cos )

(( )
( cos )
� �

�
�
�

�
��

�
�

�

�
�

�

�
�

�

�
�

n L
M1
1

2
< 0.

Which opposes our hypothesis. Hence, we have proved that there is no z U0 ,∈  such that

| ( )|=1.0φ z

Therefore,

�( ) <1, .z z U� �

Therefore, we have

Re z( )′T ( ) > 0.

Lemma 2.4: [19]. If { }tl l=0
∞  is a convex null sequence, then

t z t t z
l

l
l( ) =

2
0

=1
�

�

�

is analytic and

Re t z U( )( ) > 0, .in

Lemma 2.5: [20]. Let p  be the analytic function and satisfy the condition p(0) =1  and Re p z( )( ) >1 2/  
in U. Then, the function p ∗T  takes values in the convex hull of the image of U under calT. Where, T  
is an analytic function in U.



Khan MF, Results in Nonlinear Anal. 6 (2023), 88–107. 94

Lemma 2.6: Let T R� �
� ( )L M, , then

Re z
z

T ( ) > 1
2
.�

�
�

�

�
�

Proof. Let T R� �
� ( )L M, , and T ( ) = ,

=2
z z A z

l
l
l�

�

�  then

Re l l l A z L
M

z
l

l
l1 1 1 2 > 1

2
,

=2

1� � � � �
�

�
��

�

�
��

��

�
�

�

�
�

�
�� [ ( )( ( ))] (� � ��U ),

and it is equivalent to Re p z( )( ) >1 2/  in U, where

p z
L
M

l l l A z
l

l
l( ) =1 1

2 1 1
2

1 1 2
=2

�
�

��
�
�

�
�
�

�

�
�

�

�
�

� � � �
�

�� [ ( )( ( ))]� � 11.

Let us consider a sequence { }tl l=0
∞  given by

t t

L
M

l l l
ll0 1=1 =

2 1 1
2

1 1 2
,and for�

�
��

�
�

�
�
�

�

�
�

�

�
�

� � � �
�

[ ( )( ( ))]� �
22.

Hence the sequence { }tl l=0
∞  is convex null sequence. Now by using the Lemma 2.4, we have

t z

L
M

l l l
z

l

l( ) =1
2 1 1

2
1 1 2=2

1�
�

��
�
�

�
�
�

�

�
�

�

�
�

� � � �

�
�� [ ( )( ( ))]� �

is analytic and Re t z( )( ) > 1
2

 in U. Setting

T ( ) = ( ) 1
2 1 1

2
1 1 2=2

z
z

p z

L
M

l l ll
� �

�
��

�
�

�
�
�

�

�
�

�

�
�

� � � �

�

� [ ( )( ( ))]� �
zzl�

�

�

�
�
�
��

�

�

�
�
�
��

1

and by using the Lemma 2.5, we obtain

Re z
z

z UT ( ) > 1
2
, .�

�
�

�

�
� �

Lemma 2.7: Let T Ri L M� �
� ( ), , for i =1,2, then T T R1 2 , .� � �

� ( )L M

Proof. Let

T1
=2

( ) =z z A z
l

l
l�

�

�

and

T 2
=2

( ) = ,z z B z
l

l
l�

�

�
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then Hardamard product of T1( )z  and T 2( )z  are defined by

T T T( ) = = .1 2
=2

z z z A B z
l

l l
l( )( )� �

�

�

Since

� � � �� �� � ��� ��T T T T T T T( ) = ( ) ( ) , ( ) = ( ) ( ) , ( ) =1
2

1
2 2 2z z z

z
z z z z z

z
z z z �� �T T

1
2( ) ( ) ,z z
z

then we yield

� � �� � ��� �
��

�
�

�
�
�

�
��

�
�

�
�
�

� �T T T T( ) ( ) ( ) 1
2

1 1
2

=
( )2
1z z z z z L

M
L
M

z� � �� �z z z z L
M

L
M

�� � ��� �
��

�
�

�
�
�

�
��

�
�

�
�
�

�

�

�
�
�
�

�

�

�
�
�

T T1
2

1( ) ( ) 1
2

1 1
2 ��

�
T 2( ) .z
z (2.1)

Since T R1 , ,� �
� ( )L M  then

Re
z z z z z L

M
L
M

� � �� � ��� �
��

�
�

�
�
�

�
��

�
�

�
�
�

�

�
�T T T1 1

2
1( ) ( ) ( ) 1

2

1 1
2

� �
��

�
�
�

�

�
��

�
�
�

> 0.

By using the Lemma 2.6, we have

Re z
z

T ( ) > 1
2
.�

�
�

�
�
�

Using the Lemma 2.5 to (2.1), we get

Re
z z z z z L

M
L
M

� � �� � ��� �
��

�
�

�
�
�

�
��

�
�

�
�
�

�

�
��

�
�

T T T( ) ( ) ( ) 1
2

1 1
2

2� �

��

�

�
��

�
�
�

> 0.

Thus

T T T T= , .1 2� � �
� ( )L M

Lemma 2.8: [21]. Let c d, 0 ,∈�\{ }  e > 0. Then

 i. For c d, > 0, e c d> 1,+ +

l

l l

l l
l c d

e
e e c d
e c e d

cd e
=0

1
1

= 1�

� �
� � �

� �
�( ) ( ) ( )

( ) ( )
( ) ( )
( ) ( )

(� �
� �

�� � �c d 1 .)

 ii. For c d, > 0, e c d> 2,+ +

l

l l

l l
l c d

e
e e c d
e c e d

c d
=0

2 21
1

=
�

� �
� �

� �
( ) ( ) ( )

( ) ( )
( ) ( )
( ) ( )

( ) (� �
� �

))
( ) ( )

2

22
3

1
1 .

e c d
cd

e c d� � �
�

� � �
�

�

�
�

�

�
�
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 iii. For c d, > 0, e c d> 3,+ +

l

l l

l l
l c d

e
e e c d
e c e d

c d
=0

3 31
1

=
�

� �
� �

� �
( ) ( ) ( )

( ) ( )
( ) ( )
( ) ( )

( ) (� �
� �

))
( )

( ) ( )
( ) ( )

3

3

2 2

23
6

2
7

1
1 .

e c d
c d

e c d
cd

e c d� � �
�

� � �
�

� � �
�

�

�
�

�

�
�

 iv. For c d e, , 1,≠  with e c d> 0, 1 ,max{ }� �

l

l l

l l

c d
e c d

e e c d
e c e=0 11

= 1
1 1

1�

�
� � �

� � �
�

( ) ( )
( ) ( ) ( )( )

( ) ( )
( ) (

� �
� � ��

� �
�

�
�

�

�
�d

e
)

( )1 .

3. Main Results

In Theorem 3.1, we prove a one-to-one correspondence between the classes R�
� ( )L M,  and RH

0, , , .� � ( )L M

Theorem 3.1: Let the harmonic function � � �= ,0, ,s u L M� �RH ( )  if and only if T R� �
��= ,s u L M� � ( )  

for each µ µ(| | )=1 .

Proof: Suppose � � �= ,0, ,s u L M� �RH ( ), for each | |µ =1,  we have

Re z z z z z

Re s z zs z z s
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� � � �� � ���

� � �� � ��

� � �

� �

( )}
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L
M
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( ) ( ) ( ) ( )

> 1
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.

2}

( )

� �

,

Thus, T R� �
�� ( )L M, , for each µ µ(| | )=1 . Conversely, let T R� �

��= , ,s u L M� � ( )  then

Re s z zs z z s z

Re u z zu z z u
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( (

� � �� � ���
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( ) ( ) ( )
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, .z L
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Choosing µ µ(| | )=1 ,  we obtain

Re s z zs z z s z L
M

u z zu� � �� � ��� �
��

�
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�

�
�

�
�
�

�
�
�

� � ��( ) ( ) ( ) 1
2

> ( ) (2� � � zz z u z z U) ( ) , .2� ��� �� ( )

Hence � � ��RH
0, , , .( )L M

Theorem 3.2: The function T RH� 0, , ,� � ( )L M  is close-to-convex in U.

Proof: In the Lemma 2.3, we obtained that T R� �
��= ,s u L M� � ( )  is close-to-convex in U, (| | )µ =1 .

Now in light of Lemma 2.1 and Theorem 3.1, we can prove function T RH� 0, , ,� � ( )L M  close-to-convex 
in U.

In Theorem 3.3, we investigate coefficient bounds for functions in RH
0, , ,� � ( )L M

Theorem 3.3: Let � � �= , ,0, ,s u L M� �RH ( )  then for l ≥ 2,

b

L
M

l l ll �
�

��
�
�

�
�
�

� � � �

1 1
2

1 1 2
.

[ ( )( ( ))]� �
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The equality is hold for

�
� �

( ) =
1 1

2
1 1 2

.z z

L
M

l l l
zl�

�
��

�
�

�
�
�

� � � �[ ( )( ( ))]

Proof: Let � � �= ,0, ,s u L M� �RH ( ). Now we use the series of u z( ), we obtain
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u re re u re

l
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Where

�( ) [ ( ) ( )( )] ( )l l l l l l l a r el
l i l, , , = 1 1 2 .1 1� � � � � �� � � � � � �

Taking r � �1 , we get the desired bound.

Theorem 3.4: Let � � �= ,0, ,s u L M� �RH ( ), then for l ≥ 2, we have

 i. a b

L
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l l ll l� �
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�
�

�
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�
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 iii. a
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.
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This result is sharp for the function

�
� �
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2
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.
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�
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Proof: Suppose that � � �= ,0, ,s u L M� �RH ( ), then from Theorem 3.1, T R� �
��= ,s u L M� � ( )  for each 

µ µ(| | )=1 . Thus, for each | |µ =1 , we have

Re s u z s u z s u L
M

{ ( ) ( ) }( ) > 1
2

2� � � � �� � � ��� ��

�
�
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�
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for z U∈  and there exists an analytic function

p z p z Re p z U
l

l
l( ) =1 , ( ( ) > 0 ,

=2
�

�

� and in

such that

� � �� � ��� � � � �� � ��� �s z zs z z s z u z zu z z u z L( ) ( ) ( ) ( ) ( ) ( ) = 12 2� � � � �( ) ���

�
�

�

�
�

�

�
�

�

�
�

1
2

( ).
M

p z (3.1)

Evaluating coefficients on both sides of (3.1), we have

l l l a b L
M

p ll l l[ ( )( ( ))]( )1 1 2 = 1 1
2

, 2.1� � � � � �
��

�
�

�

�
�

�

�
�

�

�
� ��� � �

Since for | |µ =1  and l ≥1, we apply | | 2,pl ≤  we get the proof of (i). Similarly we can prove (ii) and (iii).
In the following result we find sufficient condition for a function belonging to class RH

0, , , .� � ( )L M

Theorem 3.5: Let � = 0s u� �H  with

l
l ll l l a b L

M=2
1 1 2 1 1

2
,

�

� � � � � �� � � �
��

�
�

�

�
�[ ( )( ( ))]� � (3.2)

then, � � ��RH
0, , , .( )L M

Proof: Let � = 0s u� �H . Then using (3.2),

Re s z zs z z s z L
M

Re L
M

� � �� � ��� �
��

�
�

�

�
�

�
�
�

�
�
�

�
��

�
�( ) ( ) ( ) 1

2
= 1 1

2
2� � ��

�
� � � � � �

�
�
�

��

�
�
�

��

�
��

�
�

�


��

l
l
ll l l a z

L
M

=2

11 1 2

>1 1
2

[ ( )( ( ))]� �

��
� � � � � �

� � � � �





�

�
l

l

l

l l l a

l l l b

=2

=2

1 1 2

1 1 2

[ ( )( ( ))]

[ ( )( ( ))]

� �

� � ll

l
l
ll l l b z

u z zu z z u

> 1 1 2

= ( ) ( ) (
=2

1

2


�� � � � �
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Hence � � ��RH
0, , , .( )L M

Corollary 3.6: Let � = 0s u� �H . If

l
l ll l l a b

=2

2 3 1 2,
�

� � � � �� � �[ )( )]�

then, � �
�

�
�

��

�
�

�

�
�RH

0 , 1
2
,1, 1  with � �1.

Example 3.7: By taking λ = 0.5  and δ = 0.05, L =1, and M = 1−  in Theorem 3.5, the harmonic poly-

nomials �1
3

( ) = 0.15z z z�  and �1
3 3

( ) = 0.079 0.079z z z z� �  belong to RH
0,0.5,0.05 1, 1 .( )−



Khan MF, Results in Nonlinear Anal. 6 (2023), 88–107. 99

Example 3.8: Let for λ = 3 and δ =1, L =1, and M = 1−  in Theorem 3.5, the harmonic polynomials 

�3
2 3

( ) = 1
16

1
54

z z z z� �  and �1
3 3

( ) = 0.079 0.079z z z z� �  belong to RH
0,3,1 1, 1 .( )−

Theorem 3.9: Let � � �= ,0, ,s u L M� �RH ( ) , � �� � 0 , 1 < 1� � �L M  and M ≠ 0. Then
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Result is sharp for the function
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Proof: Suppose that � � �= ,0, ,s u L M� �RH ( ). Then by using Theorem 3.1, T R� �
�� ( )L M,  for each 

µ µ(| | )=1 ,  we have
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where,
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Now by using the process of calculation of Rosihan et al. [22], we have
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Making substitution v z= ��  and after some simplification, we get

z z z z d
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Now, integrating (3.4) and making substitution � �= v z  gets
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and
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In particular, we have
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Hence complete the proof.

Remark 3.10: The results which have been derived in this section, yield the results of the classes 
RH
0,0,0 1, 1( )−  and RH

0, ,0 1, 1� ( )�  which are defined and studied in the following papers [8, 4, 5, 3].

Theorem 3.11: The class RH
0, ,0 ,λ ( )L M  is closed under convex combinations.

Proof: Let we have

� � �
i i is u L M= ,0, ,� �RH ( )
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for i l=1,2,..., , and

i

l

i i
=1

=1, 0 1 .� � �� �( )

The convex combination for ξi  can be written as:
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This shows that � � ��RH
0, , , .( )L M

In Theorem 3.12, we use Lemma 2.7 and prove that the class RH
0, , ,� � ( )L M  is closed under convolutions.

Theorem 3.12: Let � � ��RH
0, , ,( ),L M  for i =1,2. Then

� � � �
1 2

0, , , .� �RH ( )L M

Proof: Suppose � � �
i i is u L M= ,0, ,� �RH ( )  ( )i =1,2 . Then ξ1( )z  and ξ2( )z  can be written as

� �1 2 1 2 1 2= .� � � �s s u u

In order to prove that
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1 2

0, , , ,� �RH ( )L M

we have to prove that

T R� �
��= , ,1 2 1 2s s u u L M� � � �( ) ( )

for each µ µ(| | )=1 . By Lemma 2.7, the class R�
� ( )L M,  is closed under convolutions for each µ µ(| | )=1 ,

s u L Mi i� �� �
�R ( ), .

Then both T1  and T1 given by

T1 1 1 2 2= ( ) ( )s u s u� � � �
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and

T 2 1 1 2 2= ,( ) ( )s u s u� � � �

and T T R1 1, , .� �
� ( )L M  We know that R�

� ( )L M,  is closed under convex combinations.
Then the function

T T T= 1
2

=1 2 1 2 1 2( ) ( )� � � �s s u u�

belongs to R�
� ( ).L M,  Hence RH

0, , ,� � ( )L M  is closed under convolution.

Theorem 3.13: Let � � ��RH
0, , ,( )L M  and � �A  be such that
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in U. Using the Lemma 2.5, Hence G R� �
� ( )L M, .

Corollary 3.14: Let � � ��RH
0, , ,( )L M  and � �K , then � � � �� �RH

0, , , .( )L M

Proof. Suppose � �K , then Re z
z

�( ) > 1
2

�

�
�

�

�
�  for z U∈ .  Theorem 3.13 concludes that � � � �� �RH

0, , , .( )L M
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4. Applications

In this section, we involve Gaussian hypergeometric function to discuss some applications of newly 
defined class of harmonic functions and construct harmonic polynomials which belong to the consid-
ered class RH

0, , , .� � ( )L M

Theorem 4.1: Suppose

�

�
1

2

( ) = ( , , ; ),
( ) = ( , , ; ) 1 ,
z z zF c d e z
z z z F c d e z

�

� �( )

and

�3
0

( ) = ( , , ; )z z z F c d e t dt
z

� �

where c is a positive real number and either c d, 1,� � �( ) with cd > 0  or c d, {0}∈�\  with d c= .
 i. If Re c d e( )+ + 3 <  and
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2 2
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( ) ( ) ( )
( )

( )
� � � �

� � �
� �

� � �
�� � � � � �

cd
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(4.1)

then, � � �
1

0, , , .�RH ( )L M

 ii. If Re c d e( )+ + 3 <  and
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0, , , .�RH ( )L M

 iii. If c d e, , 1≠  and Re c d e( )+ + 2 <
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Proof: (i) Suppose �1
=2
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l� �

�

�  where
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e l
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l l
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2 2
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In view of Theorem 3.5, to prove that � � �
1

0, , ,�RH ( ),L M  we need to show that

l
ll l l Q L
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1,1 1 2 1 1

2
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= ( , , ;1) 1 1 2 ( 1, 1, 1;1)
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Condition (4.3) concludes that � � �
3

0, , ,�RH ( ).L M

Conclusion

In this paper, we defined a new class RH
0, , ,� � ( )L M  of normalized harmonic functions in the open unit 

disk U which is satisfying third-order differential inequality and investigated some new and know 
lemmas to prove our main results for this class. Then Theorem 3.1 proved one-to-one correspon-
dence between the classes R�

� ( )L M,  and RH
0, , ,� � ( )L M  and Theorem 3.2 proved that every function 

f L M�RH
0, , ,� � ( ) is closed-to-convex in open unit disk U. Furthermore, we examined various proper-

ties of the this class RH
0, , , ,� � ( )L M  such as coefficient bounds, growth estimates, sufficient coefficient 
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condition. We established that class RH
0, , ,� � ( )L M  is closed under convex combination and convolution. 

In Theorem 4.1, we involved Gaussian hypergeometric function and construct harmonic polynomials 
which belong to the considered class RH

0, , , .� � ( )L M
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