Results in Nonlinear Analysis 6 (2023) No. 1, 12–23 https://doi.org/10.31838/rna/2023.06.01.001 Available online at www.nonlinear-analysis.com

Topological-like notions via Δ -open sets

Mohammad A. A. Marabeh

Department of Applied Mathematics, Palestine Technical University-Kadoorie (PTUK), Tulkarem, Palestine.

Abstract

We provide a characterization of Δ -open and Δ -closed sets in topological spaces. Besides, based on the concepts of Δ -open and Δ -closed sets we investigate the notions of Δ -interior, Δ -exterior, Δ -closure, Δ -derived sets, Δ -boundary sets, and Δ -dense sets. Moreover, we study Δ -open and Δ -closed sets in product topology and subspace typology.

Keywords: open set closed set symmetric difference Δ -open set Δ -closed set Mathematics Subject Classification (2010): 54A05, 54B99, 54F99

1. Introduction

Several notions of open-like and closed-like sets in topological spaces were introduced and studied. The beginning was with Norman Levine who initiated the notion of *semi open sets*, [12]. After that α -sets and β -sets in topological spaces were introduced and considered as "nearly open" by Olav Njåstad, [17]. Furthermore, the notions of θ -open and δ -open sets were initiated, [24]. Later the concepts of *pre-open sets* and *semi-preopen sets* were started, [15] and [6], respectively.

The concept of closed sets in topological spaces was extended to generalized closed sets, [13]. However, another extension of closed sets in topological spaces called semi generalized closed sets was obtained in [7]. N. Palaniappan and K. Chandrasekhara Rao introduced regular generalized closed sets, [19]. Additionally, a class of closed-like sets called ψ -closed sets was established by M. Veera Kumar, [23].

Email address: mohammad.marabeh@ptuk.edu.ps (Mohammad A. A. Marabeh)

Recently, the idea of introducing new classes of open-like and closed-like sets in topological spaces is still attracting many researchers, for example [1–5], [8], [11], [14], [16], [20], [21], and [22].

A set in a topological space is called Δ -open if it is the symmetric difference of two open sets. The notion of Δ -open sets appeared in [18] and in [10]. However, it was pointed out in [18] and in [10] that the notion of Δ -open sets is due to a preprint by M. Veera Kumar. The complement of a Δ -open set is Δ -closed.

In Section 2, we establish a characterization for Δ -open (respectively, Δ -closed) sets that is free of the symmetric difference operation, Theorem 2.2 (respectively, Corollary 2.3). As a consequence, we see that a finite intersection (union) of Δ -open (Δ -closed) sets is Δ -open (Δ -closed).

In Section 3, notions of Δ -interior, Δ -exterior, and Δ -closure are investigated. Characterizations and properties of these notions are introduced as well.

Concepts and properties of Δ -limit points, Δ -boundary points, and Δ -dense sets are presented in Sections 4 and 5.

Section 6 is devoted to examine Δ -open and Δ -closed sets in the product topology. It is shown that a product of two Δ -open sets is again a Δ -open in the product topology, Theorem 6.2. However, this is not the case for Δ -closed sets as illustrated by Example 6.5.

Finally in Section 7 we consider Δ -open sets, Δ -closed sets, Δ -interior, and Δ -closure in subspace topology. In particular, characterizations of Δ -open and Δ -closed sets in subspace topology are given, Propositions 7.1 and 7.2.

2. Δ -open and Δ -closed sets

In this section we provide basic notions and results related to Δ -open and Δ -closed sets. These results will be used and applied in the subsequent sections.

Recall that for sets A and B their symmetric difference is given as $A\Delta B := (A - B) \cup (B - A)$ = $(A \cup B) - (A \cap B)$.

Definition 2.1. ([18] and [10]) A set A in a topological space (X,τ) is called Δ -open if there are open sets O_1 and O_2 so that $A = O_1 \Delta O_2$.

For an open set O in a topological space (X,τ) , it is obvious that $O = O\Delta\phi$, so every open set is Δ -open. However, the set $(0,1] \cup [2,3) = (0,2)\Delta(1,3)$ is Δ -open set which is not open in the standard topology on \mathbb{R} . The complement of a Δ -open set is called Δ -*closed*. We provide a characterization of Δ -open sets.

Theorem 2.2. A set A in a topological space (X, τ) is Δ -open if and only if there are an open set O and a closed set C such that $A = O \cap C$.

Proof. Assume A is Δ -open, then there are two open sets O_1 and O_2 such that $A = O_1 \Delta O_2 = (O_1 \cup O_2) - (O_1 \cap O_2) = (O_1 \cup O_2) \cap (O_1 \cap O_2)^c$. The conclusion follows directly by letting $O = O_1 \cup O_2$ and $C = (O_1 \cap O_2)^c$.

Conversely, suppose $A = O \cap C$ for some open set O and a closed set C. Then it is easily seen that $A = O\Delta(O \cap C^c)$. Hence, A is Δ -open.

Corollary 2.3. A set B in a topological space (X,τ) is Δ -closed if and only if there are an open set O and a closed set C such that $B = O \cup C$.

It follows from Theorem 2.2 that any open set and any closed set is Δ -open. Moreover, a finite intersection of Δ -open sets is Δ -open. However, union of two Δ -open sets need not be Δ -open and arbitrary intersection of Δ -open sets need not be Δ -open.

In the same manner, it follows from Corollary 2.3 that any open set and any closed set is Δ -closed. Additionally, a finite union of Δ -closed sets is Δ -closed. Nonetheless, intersection of two Δ -closed sets need not be Δ -closed and arbitrary union of Δ -closed sets need not be Δ -closed.

Example 2.4. Let $X = \{a, b, c, d, e\}$ with a topology

$$\tau = \{\phi, X, \{a, b, c\}, \{a, b, c, d\}\}$$

The collection of all Δ -open sets in *X* is

$$\tau_{\Delta o} = \left\{ \phi, X, \{a, b, c\}, \{a, b, c, d\}, \{d, e\}, \{d\}, \{e\} \right\}.$$

Clearly, the sets $\{a, b, c\}$ and $\{e\}$ are Δ -open, whereas their union is not.

It is worth noting from the previous example that the collection of all Δ -open sets does not form a topology in general.

Example 2.5. Let $\mathbb{Q} = \bigcup_{n=1}^{\infty} \{r_n\}$ be an enumeration of the rationals. For each $n \in \mathbb{N}$, let $S_n = \mathbb{R} - \{r_1, r_2, ..., r_n\}$. Then considering \mathbb{R} under the standard topology, each S_n is open set and so it is Δ -open. Yet, $\bigcap_{n=1}^{\infty} S_n = \mathbb{R} - \mathbb{Q}$ is not Δ -open.

It should be pointed out that the open set *O* and the closed set *C* in Corollary 2.3 can be chosen to be disjoint. Indeed, if $B = O \cup C$, with *O* is open and *C* is closed, then $B = O \cup (C - O)$ where C - O is closed.

A topological space is said to be $T_{\frac{1}{2}}$ if each *g*-closed set is closed, [13]. The $T_{\frac{1}{2}}$ -spaces were first defined by Norman Levine, [13]. Hereinafter, William Dunham obtained an interesting characteriza-

tion of $T_{\frac{1}{2}}$ -spaces independent of *g*-closedness. A topological space is $T_{\frac{1}{2}}$ if and only if each singleton is either open or closed, [9]. Obviously, a T_{1} -space is T_{1} .

Proposition 2.6. If (X, τ) is a T_1 -space, then single tons are Δ -open.

Proof. Let $x \in X$. Then $\{x\}$ is either open or closed and $\{x\} = \{x\} \cap X$. Therefore, by Theorem 2.2 $\{x\}$ is Δ -open.

Corollary 2.7. If (X,τ) is a T_1 -space, then for $x \in X$ the set $X - \{x\}$ is Δ -closed.

The converse of Proposition 2.6 need not be true.

Example 2.8 Let $X = \{a, b, c\}$ with a topology $\tau = \{\phi, X, \{a\}, \{a, b\}\}$. The collection of all Δ -open sets is $\tau_{\Delta o} = \{\phi, X, \{a\}, \{a, b\}, \{b, c\}, \{c\}, \{b\}\}$. Then singletons are Δ -open, though X is not T_1 .

3. Δ -interior and Δ -closure

Let (X,τ) be a topological space and $A \subseteq X$. Recall that the union of all open sets contained in A is known as the *interior* of A and is is denoted by Int(A). The *exterior* of a set is the interior of it complement, and it is denoted by Ext(A). Besides, the intersection of all closed sets containing A is known as the *closure* of A and is is denoted by Cl(A). Likewise we have the following notions.

Definition 3.1. Let (X, τ) be a topological space and $A \subseteq X$.

- (i). The union of all Δ -open sets contained in A is said to be the Δ -interior of A and is denoted by $\Delta Int(A)$.
- (ii). The Δ -exterior of A is the Δ -interior of X A and is denoted by $\Delta Ext(A)$. So, $\Delta Ext(A) = \Delta Int(X A)$.
- (iii). The intersection of all Δ -closed sets containing A is said to be the Δ -closure of A and is denoted by $\Delta Cl(A)$.

Clearly, $\Delta Int(A)$ need not be Δ -open and $\Delta Cl(A)$ need not be Δ -closed. It should be also noted that if A is Δ -open, then $\Delta Int(A) = A$, and if A is Δ -closed, then $\Delta Cl(A) = A$. In either case the converse is not true.

Example 3.2. Let $\mathbb{Q} = \bigcup_{n=1}^{\infty} \{r_n\}$ be an enumeration of the rationals. For each $n \in \mathbb{N}$, let $O_n = (-n, n)$ and $C_n = \{r_1, r_2, ..., r_n\}$. Then $A_n = O_n \cap C_n$ is Δ -open set in \mathbb{R} under the standard topology. Let $A = \bigcup_{n=1}^{\infty} A_n$. Then $\Delta Int(A) = A$, nevertheless $A = \mathbb{Q}$ is not Δ -open.

Because each open set is Δ -open and each closed set is Δ -closed, the following result follows directly.

Lemma 3.3. Let (X,τ) be a topological space and $A \subseteq X$. Then

(i) $\Delta Int(A) \subseteq \Delta Cl(A)$. (ii) $Int(A) \subseteq \Delta Int(A) \subseteq A$. (iii) $A \subseteq \Delta Cl(A) \subseteq Cl(A)$.

We state and prove the following result on a relation between $\Delta Int(A)$ and $\Delta Cl(A)$.

Proposition 3.4. Let (X,τ) be a topological space and $A \subseteq X$. Then

- (i) $X \Delta Int(A) = \Delta Cl(X A).$
- (*ii*) $X \Delta Cl(A) = \Delta Int(X A) = \Delta Ext(A)$.

Proof.

- (*i*) Let $\mathcal{O} = \{O : O \text{ is } \Delta open, and O \subseteq A\}$. Then $X \Delta Int(A) = X \bigcup \mathcal{O} = \bigcap (X \mathcal{O}) = \Delta Cl(X A)$, where $X - \mathcal{O} = \{X - O : X - O \text{ is } \Delta - closed, and X - A \subseteq X - O\}$.
- (*ii*) Let $C = \{C : C \text{ is } \Delta closed, and A \subseteq C\}$. Then $X \Delta Cl(A) = X \bigcup \Delta C = \bigcap \Delta (X C) = \Delta Int(X A) = \Delta Ext(A)$, where $X C = \{X C : X C \text{ is } \Delta open, and X C \subseteq X A\}$.

A combination of Lemma 3.3 and Proposition 3.4 yields the next result.

Lemma 3.5. Let (X,τ) be a topological space and $A \subseteq X$. Then $Ext(A) \subseteq \Delta Ext(A) \subseteq X - A$.

Definition 3.6. Let (X,τ) be a topological space and $x \in X$. A Δ -open set containing x is called Δ -neighborhood. We write $\Delta N(x)$.

The proof of the following result is trivial and so it is omitted.

Proposition 3.7. Let (X,τ) be a topological space and $A \subseteq X$. Then $x \in \Delta Int(A)$, if and only if, there is a $\Delta N(x)$, such that $\Delta N(x) \subseteq A$.

Basic properties of Δ -interior are summarized in the next proposition.

Proposition 3.8. Let (X,τ) be a topological space and $A, B \subseteq X$. Then

- (i) If $A \subseteq B$, then $\Delta Int(A) \subseteq \Delta Int(B)$.
- (*ii*) $\Delta Int(A) \cup \Delta Int(B) \subseteq \Delta Int(A \cup B)$.
- (*iii*) $\Delta Int(A \cap B) = \Delta Int(A) \cap \Delta Int(B)$.

Proof.

- (*i*) Assume $A \subseteq B$ and given $x \in \Delta Int(A)$. Proposition 3.7 implies that there is a $\Delta N(x)$ satisfying $\Delta N(x) \subseteq A$. Being $A \subseteq B$, we get $\Delta N(x) \subseteq B$. Hence, $x \in \Delta Int(B)$.
- (*ii*) Since $A \subseteq A \cup B$ and $B \subseteq A \cup B$ we get from part (*i*) that $\Delta Int(A) \subseteq \Delta Int(A \cup B)$ and $\Delta Int(B) \subseteq \Delta Int(A \cup B)$. Thus, $\Delta Int(A) \cup \Delta Int(B) \subseteq \Delta Int(A \cup B)$.
- (*iii*)On one hand it is clear that $\Delta Int(A \cap B) \subseteq \Delta Int(A) \cap \Delta Int(B)$. On the other hand, let $x \in \Delta Int(A) \cap \Delta Int(B)$. Then there are Δ -neighborhoods of x, $\Delta N_1(x)$ and $\Delta N_2(x)$ such that $\Delta N_1(x) \subseteq A$ and $\Delta N_2(x) \subseteq B$. So, $\Delta N_1(x) \cap \Delta N_2(x) \subseteq A \cap B$. Therefore, $x \in \Delta Int(A \cap B)$.

In connection with Example 2.4 if $A = \{a, b\}$ and $B = \{c\}$, then $\Delta Int(A) = \Delta Int(B) = \phi$, however $\Delta Int(A \cup B) = A \cup B$. This shows that the inclusion in statement (*ii*) of Proposition 3.8 is strict.

Corollary 3.9. Let (X,τ) be a topological space and $A, B \subseteq X$. Then

- (*i*) If $A \subseteq B$, then $\Delta Ext(B) \subseteq \Delta Ext(A)$.
- (*ii*) $\Delta Ext(A) \cup \Delta Ext(B) \subseteq \Delta Ext(A \cap B)$.
- (*iii*) $\Delta Ext(A \cup B) = \Delta Ext(A) \cap \Delta Ext(B)$.

Proposition 3.10. Let (X,τ) be a $T_{\underline{1}}$ -space and $A \subseteq X$. Then $\Delta Int(A) = A$.

Proof. It is known that $\Delta Int(A) \subseteq A$ by Lemma 3.3(*ii*). Conversely, let $x \in A$, then $\{x\}$ is a Δ -neighborhood of x by Proposition 2.6. So, $x \in \{x\} \subseteq A$. That is, $x \in \Delta Int(A)$. Therefore, $A \subseteq \Delta Int(A)$ and hence, $\Delta Int(A) = A$.

Corollary 3.11. Let (X,τ) be a $T_{\frac{1}{2}}$ -space and $A, B \subseteq X$. Then $\Delta Int(A) \cup \Delta Int(B) = A \cup B = \Delta Int(A \cup B)$.

Example 2.8 confirms that the converse of Proposition 3.10 is not correct.

In the same manner we give a characterization of Δ -closure in terms of Δ -neighborhoods.

Proposition 3.12. Let (X,τ) be a topological space and $A \subseteq X$. Then $x \in \Delta Cl(A)$, if and only if for any $\Delta N(x)$, $\Delta N(x) \cap A \neq \phi$.

Proof. For the forward direction, assume $x \in \Delta Cl(A)$ but there is a $\Delta N(x)$, satisfying $\Delta N(x) \cap A = \phi$. So, $A \subseteq X - \Delta N(x)$. Hence, $X - \Delta N(x)$ is a Δ -closed set containing A. As $x \in \Delta Cl(A)$, we have $x \in X - \Delta N(x)$ which is absurd. For the backward direction, suppose that for any $\Delta N(x)$, Δ -neighborhood of x, $\Delta N(x) \cap A \neq \phi$, yet $x \notin \Delta Cl(A)$. Let $C = \{C : C \text{ is } \Delta - closed, and A \subseteq C\}$. Therefore,

$$x \notin \Delta Cl(A) \Leftrightarrow x \notin \cap \quad \mathcal{C} \Leftrightarrow x \in \bigcup (X - \mathcal{C})$$

where, $X - C = \{X - C : X - C \text{ is } \Delta - open, \text{ and } X - C \subseteq X - A\}$. So, there is a Δ -closed set C satisfying $x \in X - C \subseteq X - A$. That is X - C is a Δ -neighborhood of x with $(X - C) \cap A = \phi$ which is a contradiction.

Fundamental properties of Δ -closure are given below.

Proposition 3.13. Let (X,τ) be a topological space and $A, B \subseteq X$. Then

- (i) If $A \subseteq B$, then $\Delta Cl(A) \subseteq \Delta Cl(B)$.
- (*ii*) $\Delta Cl(A) \cup \Delta Cl(B) = \Delta Cl(A \cup B)$.
- (*iii*) $\Delta Cl(A \cap B) \subseteq \Delta Cl(A) \cap \Delta Cl(B)$.

Proof.

- (*i*) Suppose $A \subseteq B$ and let $x \in \Delta Cl(A)$. Let $\Delta N(x)$ be a Δ -neighborhood of x. Then Proposition 3.12 asserts that $\Delta N(x) \cap A \neq \phi$. As $A \subseteq B$, we get $\Delta N(x) \cap B \neq \phi$. So, $x \in \Delta Cl(B)$.
- (*ii*) On one hand, $A, B \subseteq A \cup B$, so it follows by part (*i*) that $\Delta Cl(A) \cup \Delta Cl(B) \subseteq \Delta Cl(A \cup B)$. On the other hand, assume $x \in \Delta Cl(A \cup B)$ but $x \notin \Delta Cl(A) \cup \Delta Cl(B)$. Then by Proposition 3.12 there are Δ -neighborhoods of x, $\Delta N_1(x)$ and $\Delta N_2(x)$ such that $\Delta N_1(x) \cap A = \phi$ and $\Delta N_2(x) \cap B = \phi$. Hence, $(\Delta N_1(x) \cap \Delta N_2(x)) \cap (A \cup B) = \phi$. This implies that $x \notin \Delta Cl(A \cup B)$ which contradicts the assumption. Therefore, $\Delta Cl(A \cup B) \subseteq \Delta Cl(A) \cup \Delta Cl(B)$.
- (*iii*) The conclusion follows directly from the fact that $A \cap B \subseteq A$ and $A \cap B \subseteq B$, and applying part (*i*).

Let's consider Example 2.4. For $A = \{a, b\}$ and $B = \{c, d\}$, we have $A \cap B = \phi$ and so $\Delta Cl(A \cap B) = \phi$. However, $\Delta Cl(A) = \{a, b, c\}$, $\Delta Cl(B) = \{a, b, c, d\}$ and so $\Delta Cl(A) \cap \Delta Cl(B) = \{a, b, c\}$. This assures that in statement (*iii*) of Proposition 3.13 the inclusion is strict.

The next result points out that in a T_1 -space, each set and its Δ -closure are the same.

Proposition 3.14. Let (X,τ) be a $T_{\frac{1}{2}}$ -space and $A \subseteq X$. Then $\Delta Cl(A) = A$.

Proof. Lemma 3.4 (3) shows that $A \subseteq \Delta Cl(A)$. Conversely, let $x \in \Delta Cl(A)$. Proposition 3.12 implies that $\Delta N(x) \cap A \neq \phi$, for any Δ -neighborhood of x. Proposition 2.6 involves that in particular $\{x\}$ is a Δ -neighborhood of x. Therefore, $x \in A$ and $\Delta Cl(A) = A$.

Corollary 3.15. Let (X,τ) be a T_1 -space and $A, B \subseteq X$. Then $\Delta Cl(A \cap B) = A \cap B = \Delta Cl(A) \cap \Delta Cl(B)$.

Example 2.8 shows that the converse of Proposition 3.14 is not correct.

4. Δ -limit points and Δ -boundary points

In this section we give analogues to *limit points* and *boundary points* notions in terms of Δ open sets.

Definition 4.1. Let (X,τ) be a topological space and $A \subseteq X$. A point $x \in X$ is called Δ -limit point of A if for any $\Delta N(x)$, Δ -neighborhood of x we have $(\Delta N(x) \cap A) - \{x\} \neq \phi$. The set of all Δ -limit points of a set A is called the Δ -derived set of A, and will be denoted by $\Delta Der(A)$.

In a similar manner we denote Der(A) the *derived set* of a set A. Since every open set is Δ -open, it is apparent that $\Delta Der(A) \subseteq Der(A)$.

Example 4.2. Let $X = \{a, b, c, d\}$ with a topology $\tau = \{\phi, X, \{a, b\}\}$. Let $\tau_{\Delta o}$ denote the collection of all Δ -open sets in X. Then

$$\tau_{\Lambda o} = \{\phi, X, \{a, b\}, \{c, d\}\}$$

For $A = \{a, c\}$, we get $Der(A) = \{b, c, d\}$. However $\Delta Der(A) = \{b, d\}$.

Proposition 4.3 *Let* (X,τ) *be a topological space and* $A, B \subseteq X$ *. Then*

- (i) If $A \subseteq B$, then $\Delta Der(A) \subseteq \Delta Der(B)$.
- (*ii*) $\Delta Der(A) \cup \Delta Der(B) = \Delta Der(A \cup B)$.
- $(iii) \Delta Der(A \cap B) \subseteq \Delta Der(A) \cap \Delta Der(B).$

Proof.

- (*i*) Assume $A \subseteq B$. Let $x \in \Delta Der(A)$ and $\Delta N(x)$ be any Δ -neighborhood of x. Then $(\Delta N(x) \cap A) \{x\} \neq \phi$, but $A \subseteq B$, so $(\Delta N(x) \cap B) \{x\} \neq \phi$. Hence, $x \in \Delta Der(B)$.
- (*ii*) It is known that $A \subseteq A \cup B$ and $B \subseteq A \cup B$. So it follows from part (*i*) that $\Delta Der(A) \subseteq \Delta Der(A \cup B)$ and $\Delta Der(B) \subseteq \Delta Der(A \cup B)$. Thus, $\Delta Der(A) \cup \Delta Der(B) \subseteq \Delta Der(A \cup B)$.

Conversely, assume that $x \in \Delta Der(A \cup B)$ but $x \notin \Delta Der(A) \cup \Delta Der(B)$. Hence, there is $\Delta N(x)$ a Δ -neighborhood of x such that $A \cap \Delta N(x) = \{x\}$ and $B \cap \Delta N(x) = \{x\}$. So, $(A \cup B) \cap \Delta N(x)$

- $= (A \cap \Delta N(x)) \cup (B \cap \Delta N(x)) = \{x\}$. Therefore, $x \notin \Delta Der(A \cup B)$ which is a contradiction.
- (*iii*) It is known that $A \cap B \subseteq A$ and $A \cap B \subseteq B$. Applying part (*i*) we get $\Delta Der(A \cap B) \subseteq \Delta Der(A)$ and $\Delta Der(A \cap B) \subseteq \Delta Der(B)$. Therefore, $\Delta Der(A \cap B) \subseteq \Delta Der(A) \cap \Delta Der(B)$.

We provide an example that shows the inclusion in part (*iii*) of Proposition 4.3 is strict.

Example 4.4 Let $X = \{a, b, c, d, e\}$ with a topology

 $\tau = \{\phi, X, \{a, b, c\}, \{d\}, \{a, b, c, d\}\}.$

Let $\tau_{\scriptscriptstyle \Delta o}$ denote the collection of all $\Delta\text{-}open$ sets in X. Then

$$au_{\Delta o} = ig\{\phi, X, \{a, b, c\}, \{d\}, \{a, b, c, d\}, \{a, b, c, e\}, \{d, e\}, \{e\} ig\}.$$

For $A = \{a, b\}$ and $B = \{c, d, e\}$, we get $\Delta Der(A) = \{a, b, c\}$ and $\Delta Der(B) = \{a, b\}$. Hence, $\Delta Der(A) \cap, \Delta Der(B) = \{a, b\}$. However, $A \cap B = \phi$ and so $\Delta Der(A \cap B) = \phi$.

Proposition 4.5. Let (X,τ) be a $T_{\underline{1}}$ -space and $A \subseteq X$. Then $\Delta Der(A) = \phi$.

Proof. It is obvious that $\Delta Der(\phi) = \phi$. So, assume without loss of generality that $A \neq \phi$. Let $x \in \Delta Der(A)$. Then Proposition 2.6 confirms that $\{x\}$ is a Δ -neighborhood of x. We take into account two cases:

- (*i*) $x \in A$. Then $\{x\} \cap A \{x\} = \{x\} \{x\} = \phi$, which is a contradiction.
- (*ii*) $x \notin A$. Then $\{x\} \cap A \{x\} = \phi \{x\} = \phi$, which is a contradiction.

Therefore, $\Delta Der(A) = \phi$.

The converse of the previous proposition does not hold. In Example 2.8 each set has no Δ -limit points, yet the space is not T_1 .

Definition 4.6 Let (X,τ) be a topological space and $A \subseteq X$. A point $x \in X$ is called Δ -boundary point of A if for any $\Delta N(x)$, Δ -neighborhood of x we have $\Delta N(x) \cap A \neq \phi$ and $\Delta N(x) \cap (X - A) \neq \phi$. The set of all semi Δ -boundary points of a set A is called the Δ -boundary of A, and will be denoted by $\Delta Bd(A)$.

Theorem 4.7 *Let* (X,τ) *be a topological space and* $A \subseteq X$ *. Then*

- (i) $\Delta Bd(A) = \Delta Cl(A) \cap \Delta Cl(X A).$
- (ii) The $\Delta Int(A)$ and $\Delta Bd(A)$ are disjoint.
- $(iii) \Delta Cl(A) = \Delta Int(A) \cup \Delta Bd(A).$
- (iv) If $A \subseteq X$, then $X = \Delta Int(A) \cup \Delta Bd(A) \cup \Delta Ext(A)$.
- (v) If A is Δ -clopen (both Δ -open and Δ -closed), then $\Delta Bd(A) = \phi$.

(vi) If A is \triangle -open, then $\triangle Bd(A) = \triangle Cl(A) - A$.

Proof.

- (i) Trivial.
- (*ii*) If $x \in \Delta Int(A)$, then by Proposition 3.7, there is a $\Delta N(x)$ such that $\Delta N(x) \subseteq A$. As a consequence of Proposition 3.12, $x \notin Cl(X A)$. So, $x \notin \Delta Bd(A)$. Therefore, $\Delta Int(A) \cap \Delta Bd(A) = \phi$.
- (*iii*) Clearly, $\Delta Int(A) \subseteq \Delta Cl(A)$ and $\Delta Bd(A) \subseteq \Delta Cl(A)$, so $\Delta Int(A) \cup \Delta Bd(A) \subseteq \Delta Cl(A)$. On the other hand, let $x \in \Delta Cl(A)$. We have two cases:
 - Case 1: $x \in \Delta Int(A)$. Then $x \in \Delta Int(A) \cup \Delta Bd(A)$, and we are done.
 - Case 2: $x \notin \Delta Int(A)$. Let $\Delta N(x)$ be any Δ -neighborhood of x. As a result of Proposition 3.7, $\Delta N(x) \cap (X A) \neq \phi$. Thus, $x \in \Delta Cl(X A)$. Hence, $x \in \Delta Bd(A)$ and accordingly $x \in \Delta Int(A) \cup \Delta Bd(A)$.

(*iv*) Let $A \subseteq X$. It follows from Proposition 3.13 that

$$X = \Delta Cl(X) = \Delta Cl(A \cup (X - A)) = \Delta Cl(A) \cup \Delta Cl(X - A).$$

Part (iii) above assures that

$$X = \Delta Int(A) \cup \Delta Bd(A) \cup \Delta Int(X - A) \cup \Delta Bd(x - A).$$

However, $\Delta Bd(x - A) = \Delta Bd(A)$ and $\Delta Int(X - A) = \Delta Ext(A)$. Therefore,

$$X = \Delta Int(A) \cup \Delta Bd(A) \cup \Delta Ext(A).$$

Finally, statements (v) and (vi) follow directly from part (i).

It follows from Theorem 4.7(*i*) and Lemma 3.3(*iii*) that $\Delta Bd(A) \subseteq Bd(A)$, where Bd(A) denotes the boundary of A in a topological space. In context to Example 2.4, if $A = \{a, b, c, e\}$, then $\Delta Bd(A) = \Delta Cl(A) - A = \phi$, yet A is Δ -closed but not Δ -open. This indicates that the converse of statements (*v*) and (*vi*) in Theorem 4.7 fails to hold in general.

Taking into consideration Proposition 3.14 and Theorem 4.7 the following result is evident.

Proposition 4.8 Let (X,τ) be a $T_{\underline{1}}$ -space and $A \subseteq X$. Then, $\Delta Bd(A) = \phi$.

The converse of the above proposition is not valid. In Example 2.8 each set has an empty Δ -boundary, even so the space is not T_1 .

5. Δ -dense sets

Recall that a set *A* in a topological space *X* is called *dense* if Cl(A) = X. Similarly we have the following notion.

Definition 5.1. Let (X,τ) be a topological space and $D \subseteq X$. Then D is said to be Δ -dense in X if $\Delta Cl(D) = X$.

It follows directly from Lemma 3.3(*iii*), that if a set is Δ -dense, then it is dense in the usual sense. Nonetheless, the converse need not be true. In Example 2.4, the set $\{a,b,c,e\}$ is dense in the usual sense, even so it is not Δ -dense.

Proposition 5.2. Let (X,τ) be a topological space and $D \subseteq X$. Then D is Δ -dense in X if and only if, $\Delta Int(X - D) = \phi$.

Proof. A set *D* is Δ -dense in *X* if and only if $\Delta Cl(D) = X$ if and only if $X - \Delta Cl(D) = \phi$ if and only if $\Delta Int(X - D) = \phi$, as consequence of Proposition 3.4.

Proposition 5.3. Let (X,τ) be a topological space and D be a Δ -dense set in X. If $A \subseteq X$, then $\Delta Int(A) \subseteq \Delta Cl(D \cap \Delta Int(A))$.

Proof. Suppose *D* is Δ -dense. Let $x \in \Delta Int(A)$, then there is $\Delta M(x)$ a Δ -neighborhood of *x* so that $\Delta M(x) \subseteq A$. Let $\Delta N(x)$ be any Δ -neighborhood of *x*. Since *D* is Δ -dense, we get $\Delta N(x) \cap \Delta M(x) \cap D \neq \phi$. So, $\Delta N(x) \cap \Delta M(x) \cap D \cap \Delta Int(A) = \Delta N(x) \cap \Delta M(x) \cap D \neq \phi$. On account of $\Delta N(x) \cap \Delta M(x) \cap D \cap \Delta Int(A) \subseteq \Delta N(x) \cap D \cap \Delta Int(A)$, we have $\Delta N(x) \cap D \cap \Delta Int(A) \neq \phi$. Therefore, $x \in \Delta Cl(D \cap \Delta Int(A))$ and $\Delta Int(A) \subseteq \Delta Cl(D \cap \Delta Int(A))$.

Corollary 5.4. Let (X,τ) be a topological space and D be a Δ -dense set in X. If O is Δ -open, then $O \subseteq \Delta Cl(D \cap O)$.

The next result follows readily from Proposition 3.14.

Proposition 5.5. Each proper subset of a T_1 -space is not Δ -dense.

Proof. Let *A* be a proper subset of T_1 -space \tilde{X} . Proposition 3.14 guarantees that $\Delta Cl(A) = A \neq X$. Thus, *A* is not Δ -dense.

6. Δ -open sets and Δ -closed sets versus product topology

We recall the following lemma which is going to be utilized later.

Lemma 6.1. Let A,B,C and D be sets. Then

- (*i*) $(A \cap C) \times (B \cap D) = (A \times B) \cap (C \times D).$
- (*ii*) $(A \times B) \cup (C \times D) \subseteq (A \cup C) \times (B \cup D).$
- (iii) If $A \subseteq X$ and $B \subseteq Y$, then

$$X \times Y - (A \times B) = (X \times (Y - B)) \cup ((X - A) \times B).$$

Proposition 6.2. Let (X_1, τ_1) and (X_2, τ_2) be two topological spaces. If A_1 is Δ -open in X_1 and A_2 is Δ -open in X_2 , then $A_1 \times A_2$ is Δ -open in the product topology $X_1 \times X_2$.

Proof. Suppose A_1 is Δ -open in X_1 and A_2 is Δ -open in X_2 . Then Theorem 2.2 assures that there are an open set O_1 and a closed set C_1 in X_1 , and there are an open set O_2 and a closed set C_2 in X_2 , such that $A_1 = O_1 \cap C_1$ and $A_2 = O_2 \cap C_2$. So Lemma 6.1(*i*) implies that

$$A_1 \times A_2 = (O_1 \cap C_1) \times (O_2 \cap C_2) = (O_1 \times O_2) \cap (C_1 \times C_2)$$

Since $O_1 \times O_2$ is open in $X_1 \times X_2$ and $C_1 \times C_2$ is closed in $X_1 \times X_2$ we get $A_1 \times A_2$ is Δ -open in $X_1 \times X_2$.

Corollary 6.3. Let (X_1, τ_1) and (X_2, τ_2) be two topological spaces. If B_1 is Δ -closed in X_1 and B_2 is Δ -closed in X_2 , then $(X_1 \times B_2) \cup (B_1 \times X_2)$ is Δ -closed in the product topology $X_1 \times X_2$.

Proof. Suppose B_1 is Δ -closed in X_1 and B_2 is Δ -closed in X_2 . Obviously, $X_1 - B_1$ is Δ -open in X_1 and $X_2 - B_2$ is Δ -open in X_2 . As a result of Proposition 6.2 we have $(X_1 - B_1) \times (X_2 - B_2)$ is Δ -open in $X_1 \times X_2$. Thus, the complement of $(X_1 - B_1) \times (X_2 - B_2)$ is Δ -closed in $X_1 \times X_2$. As a consequence of Lemma 6.1 we get

$$X_1 \times X_2 - ((X_1 - B_1) \times (X_2 - B_2)) = (X_1 \times B_2) \cup (B_1 \times X_2).$$

In other words, $(X_1 \times B_2) \cup (B_1 \times X_2)$ is Δ -closed in $X_1 \times X_2$.

Corollary 6.4. Let (X,τ) be a topological space. If B is Δ -closed in X, then and $(X \times B) \cup (B \times X)$ is Δ -closed in the product topology $X \times X$.

The converse of Proposition 6.2 need not be true. Also, the Cartesian product of two Δ -closed sets need not be Δ -closed in the product topology.

Example 6.5. Let $X = \{a, b, c, d\}$ with a topology $\tau = \{\phi, X, \{a, b\}, \{a\}\}$. The collection of all Δ -open sets is $\tau_{\Delta o} = \{\phi, X, \{a, b\}, \{a\}, \{c, d\}, \{c, b, d\}, \{b\}\}$. The product topology on $X \times X$ is

$$\begin{aligned} \tau_{X \times X} = & \left\{ \phi, X \times X, \left\{ (a, a), (b, a), (c, a), (d, a) \right\}, \left\{ (a, a), (b, a) \right\}, \left\{ (a, a), (a, b) \right\}, \\ & \left\{ (a, a), (a, b), (b, a) \right\}, \left\{ (a, a) \right\}, \left\{ (a, a), (b, a), (c, a), (d, a), (a, b), (b, b), (c, b), (d, b) \right\} \right\} \end{aligned}$$

The set $\{(a,a),(a,b),(b,a)\}$ is open in $X \times X$, so it is Δ -open. However, there are no two Δ -open sets in X whose product equals $\{(a,a),(a,b),(b,a)\}$.

Additionally, the set $\{a,c,d\}$ is Δ -closed in X, yet $\{a,c,d\} \times \{a,c,d\}$ is not Δ -closed in $X \times X$.

Let (X_1, τ_1) and (X_2, τ_2) be two topological spaces. Let B_1 be Δ -closed in X_1 and B_2 be Δ -closed in X_2 . Then Corollary 2.3 guarantees that there are an open set O_1 and a closed set C_1 in X_1 , and there are an open set O_2 and a closed set C_2 in X_2 , such that $B_1 = O_1 \cup C_1$ and $B_2 = O_2 \cup C_2$.

Since $O_1 \times O_2$ is open in $X_1 \times X_2$ and $C_1 \times C_2$ is closed in $X_1 \times X_2$ we get $B = (O_1 \times O_2) \cup (C_1 \times C_2)$ is Δ -closed in $X_1 \times X_2$.

Due to Lemma 6.1(*ii*), we have $B \subseteq B_1 \times B_2$. In spite of the Cartesian product of two Δ -closed sets $B_1 = O_1 \cup C_1$ and $B_2 = O_2 \cup C_2$ need not be Δ -closed, it does contain a Δ -closed subset B in $X_1 \times X_2$ of the form $B = (O_1 \times O_2) \cup (C_1 \times C_2)$.

7. Δ -open sets in subspace topology

Let (X,τ) be a topological space and $Y \subseteq X$. Then it is known that the collection

$$\tau_Y = \{ Y \cap U : U \text{ is open in } X \}$$

forms a topology on *Y*, named as the *subspace topology*. Recall that a set *B* is closed in *Y* if and only if there is a closed set *C* in *X* satisfying $B = Y \cap C$. We aim in this section to study Δ -open and Δ -closed sets in the subspace topology.

Proposition 7.1. Let (X,τ) be a topological space and $Y \subseteq X$. Then, S is Δ -open in Y if and only if there is a Δ -open set A in X such that $S = Y \cap A$.

Proof. Let $S \subseteq Y$. Then, *S* is Δ -open in *Y* if and only if there is an open set *U* in *Y* and a closed set *K* in *Y* such that $S = U \cap K$ if and only if there is an open set *O* in *X* and a closed set *C* in *X* such that $S = O \cap C \cap Y$. The conclusion follows by taking $A = O \cap C$ and employing Theorem 2.2.

Proposition 7.2. Let (X,τ) be a topological space and $Y \subseteq X$. Then, S is Δ -closed in Y if and only if there is a Δ -closed set B in X such that $S = Y \cap B$.

Proof. Let $S \subseteq Y$. Then, S is Δ -closed in Y if and only if there is an open set U in Y and a closed set K in Y such that $S = U \cup K$ if and only if there is an open set O in X and a closed set C in X such that $S = (Y \cap O) \cup (Y \cap C) = Y \cap (O \cup C)$. The conclusion follows by taking $B = O \cup C$ and applying Corollary 2.3.

Proposition 7.3. Let (X,τ) be a topological space and $Y \subseteq X$. If S is Δ -open in Y and Y is Δ -open in X, then S is Δ -open in X.

Proof. Since *S* is Δ -open in *Y*, $S = Y \cap A$ for some Δ -open set in *X*. Since *Y* and *A* are both Δ -open in *X*, so is $Y \cap A$.

Let (X,τ) be a topological space, $Y \subseteq X$, and $A \subseteq Y$. Let $\Delta Cl_Y(A)$ denote the Δ -closure of A in Y and $\Delta Int_Y(A)$ denote the Δ -interior of A in Y.

Proposition 7.4. Let (X,τ) be a topological space, $Y \subseteq X$, and $A \subseteq Y$. Then $\Delta Cl_Y(A) \subseteq Y \cap \Delta Cl(A)$. Moreover, if $\Delta Cl_Y(A)$ is Δ -closed in Y, then $\Delta Cl_Y(A) = Y \cap \Delta Cl(A)$.

Proof. Assume $Y \subseteq X$, and $A \subseteq Y$. Let

$$\mathcal{C}_X = \{C : C \text{ is } \Delta - \text{closed in } X, \text{ and } A \subseteq C\}$$

and

$$C_Y = \{C : C \text{ is } \Delta - \text{closed in } Y, and A \subseteq C\}$$

Then

$$Y \cap \Delta Cl(A) = Y \cap \cap \Delta \mathcal{C}_X = \cap \Delta (Y \cap \mathcal{C}_X) \supseteq \cap \Delta \mathcal{C}_Y = \Delta Cl_Y(A)$$

where $Y \cap C_X = \{Y \cap C : C \text{ is } \Delta - \text{closed in } X, \text{ and } A \subseteq C\}.$

Next, suppose that $\Delta Cl_Y(A)$ is Δ -closed in Y. Then Proposition 7.2 implies that there is a Δ -closed set B in X such that $\Delta Cl_Y(A) = Y \cap B$. Clearly, $B \supseteq A$, so $\Delta Cl(A) \subseteq B$. Hence, $Y \cap \Delta Cl(A) \subseteq Y \cap B$. Therefore, $Y \cap \Delta Cl(A) \subseteq \Delta Cl_Y(A)$. Consequently, $\Delta Cl_Y(A) = Y \cap \Delta Cl(A)$.

Proposition 7.5. Let (X,τ) be a topological space, $Y \subseteq X$, and $A \subseteq Y$. Then $\Delta Int(A) \subseteq \Delta Int_Y(A)$.

Proof. Suppose $Y \subseteq X$, and $A \subseteq Y$. Let

$$\mathcal{O}_X = \{ O : O \text{ is } \Delta - \text{ open in } X, \text{ and } O \subseteq A \}$$

and

$$\mathcal{O}_Y = \{ O : O \text{ is } \Delta - \text{ open in } Y, \text{ and } O \subseteq A \}$$

Then

$$\Delta Int(A) = Y \cap \Delta Int(A) = Y \cap \bigcup \mathcal{O}_{X} = \bigcup (Y \cap \mathcal{O}_{X}) \subseteq \bigcup \mathcal{O}_{Y} = Int_{Y}(A)$$

where $Y \cap \mathcal{O}_X = \{Y \cap O : O \text{ is } \Delta - \text{open in } X, \text{ and } O \subseteq A\}.$

Generally the inclusion in Proposition 7.5 is strict. With reference to Example 2.4, let $Y = \{a, b, d\}$ and $A = \{a, b\}$. Then $\Delta Int(A) = \phi$ but $\Delta Int_Y(A) = A$.

8. Conclusion

In this paper we provide characterizations for Δ -open sets and Δ -closed sets that are independent of the symmetric difference operation; Theorem 2.2 and Corollary 2.3. We define and investigate the notions of Δ -interior, Δ -closure, Δ -limit points, Δ -boundary points, and Δ -dense sets. The investigation continues to Δ -open and Δ -closed sets in product topology and in subspace topology. Many of the properties of those " Δ notions" agree with their corresponding topological notions. However, several counter examples are given to show distinction between the " Δ notions" and the usual topological notions.

For a future work we are going to define and investigate the concepts of Δ -continuous functions and Δ -irresolute functions in topological spaces.

Acknowledgment

The author would like to thank Palestine Technical University-Kadoorie (PTUK) for their support and help. Also, the author would like to thank the referees for their effort and valuable suggestions.

References

- [1] L. S. Abdalbaqi, Z. T. Abdalqater, H. O. Mousa, On B^{ic}-open set and B^{ic}-continuous function in topological spaces, International Journal of Nonlinear Analysis and Applications, (2022), 13(1), 737–744.
- [2] B. S. Abdullah, S. W. Askandar, A. A. Mohammed, New classes of open sets in topological spaces, Turkish Journal of Computer and Mathematics Education (TURCOMAT), (2022), 13(03), 247–256.
- [3] S. H. Abdulwahid, A. M. A. Jumaili, On E_c-Continuous and δ-β_c-Continuous Mappings in Topological Spaces Via E_copen and δ-β_c-open sets, Iraqi Journal of Science, (2022), 3120–3134.
- [4] M. F. Ahmed, T. H. Jasim, On regular semi supra open set and regular semi supra continuity, Tikrit Journal of Pure Science, (2022), 27(1), 133–136.
- [5] S. Al Ghour, On some types of functions and a form of compactness via ω_s -open sets, AIMS Mathematics, (2022), 7(2), 2220–2236.
- [6] D. Andrijevic'c, Semi-preopen sets, Matematički Vesnik, (1986), 38(93), 24-32.
- [7] P. Bhattacharyya, Semi-generalized closed sets in topology, Indian J. Math., (1987), 29(3), 375–382.
- [8] C. Boonpok, J. Khampakdee, (Λ, sp)-open sets in topological spaces, European Journal of Pure and Applied Mathematics, (2022), 15(2), 572–588.
- [9] W. Dunham, T₁-spaces, Kyungpook Mathematical Journal, (1977), 17(2), 161–169. $\frac{1}{2}$
- [10] S. Ganesan, On α - Δ -open sets and generalized Δ -closed sets in topological spaces, International Journal of Analytical and Experimental Model Analysis, (2020) 12, 213–239.
- [11] J. A. Hassan, M. A. Labendia, θs-open sets and θs-continuity of maps in the product space, J. Math. Comput. Sci., (2022), 25, 182–190.
- [12] N. Levine, Semi-open sets and semi-continuity in topological spaces, The American Mathematical Monthly, (1963), 70(1), 36–41.
- [13] N. Levine, Generalized closed sets in topology, Rendiconti del Circolo Matematico di Palermo, (1970), 19(1), 89-96.
- [14] A. J. Mahmood, A. Naser, Some results for generalizations of semi-open sets in topological spaces, International Journal of Nonlinear Analysis and Applications, (2022), 13(1), 3803–3809.
- [15] A. Mashhour, On preconlinuous and weak precontinuous mappings, in: Proc. Math. Phys. Soc. Egypt., (1982), 53, 47–53.
- [16] P. Meenakshi, R. Sudha, J-closed functions via J-closed sets in topological spaces, Novel Research Aspects in Mathematical and Computer Science, (2022), 4, 89–98.
- [17] O. Njåstad, On some classes of nearly open sets, Pacific Journal of Mathematics, (1965), 15(3), 961–970.
- [18] T. Nour, A. M. Jaber, Semi Δ-open sets in topological spaces, International Journal of Mathematics Trends and Technology (IJMTT), (2020), 66(8), 139–143.
- [19] N. Palaniappan, K. C. Rao, Regular generalized closed sets, Kyungpook Mathematical Journal, (1993), 33(2), 211–219.
- [20] M. S. Sarsak, More properties of generalized open sets in generalized topological spaces, Demonstration Mathematical, (2022), 55(1), 404–415.
- [21] J. A. Sasam, M. Labendia, θ_{sw} -continuity of maps in the product space and some versions of separation axioms, The Mindanawan Journal of Mathematics, (2022), 4(1), 1–12.

- [22] J. S. Shuwaie, A. K. Hussain, Topological spaces F1 and F2, Wasit Journal of Computer and Mathematics Sciences, (2022), 1(2), 62–70.
- [23] M. Veera Kumar, Between semi-closed sets and semi-pre-closed set, Rend. Istit. Mat. Univ. Trieste, (ITALY) XXXXII, (2000), 25–41.
- [24] N. Velicko, H-closed topological spaces, Amer. Math. Soc. Transl., (1968), 78, 103–118.