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Abstract

The objective of this article is to study a three step iteration process in the framework of Banach spaces
and obtain convergence results for generalized a-Reich-Suzuki nonexpansive mappings. We also pro-
vide numerical examples that support our main results and illustrate the convergence behaviour of
the proposed process. In the end, we discuss about the solution of split feasibility problem by utilizing
our results.
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1. Introduction

Fixed point theorems are really important because of their applications. Banach fixed point result
is the most famous fixed point theorem. It has only two conditions, underlying mapping must be con-
traction and involved space must be complete. Its wide applications to different fields of mathematics
as well as out side mathematics are well known. Researchers generalized this great theorem in two
ways: either by weakening the involved contraction condition or via generalizing the metric structure.
Banach fixed point theorem is not satisfied by the arbitrary nonexpansive mapping which is very
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natural class of mappings. Hence in 1965, Kirk [1] proved a very basic existence results in respect of
nonexpansive mappings. After this, many generalization of nonexpansive mappings came into pic-
ture. Generalizations due to Suzuki [2], Garcia et al. [3] and Aoyama and Kohsaka [4] are worth men-
tioning. It is worth mentioning that nonexpansive mappings are always continuous but geenralized
nonexapnsive mappings need not be continuous in general. In 2017, Pant and Shukla [5] introduced
the class of generalized a-nonexpansive mappings and established some existence and convergence
theorems for the newly introduced class of mappings.

In 2018, Pandey et al. [6] introduced the class of generalized a-Reich-Suzuki nonexpansive map-
pings and obtained convergence theorems.

Anothor direction of fixed point theory is to construct iteration process to reach fixed points of non-
linear mappings. Mann iteration [7] and Ishikawa iteration [8] are one and two step process. In 2000,
Noor studied the convergence criteria of the three-step iteration method for solving general variational
inequalities and related problems. Glowinski and Le Tallec [9] employed three-step iterative approaches
to find solutions for the problem of elastoviscoplasticity, eigenvalue computation and the theory of liquid
crystals. In [9], it was shown that the three-step iterative process yields better numerical results than
the estimated iterations in two and one steps. For concrete application of fixed point iteration process
one can see [10-14]. Owing to importance of these study, many three step iteration due to Noor [15],
Agarwal et al. iteration [16], Abbas and Nazir iteration [17], Thakur et al. iterations [18, 19], M* itera-
tion [20], M iteration [21], K iteration [22] and K* iteration [23] came into picture.

Motivated by foregoing studies, Ullah et al. [24] and Temir and Korkut [25] introduced a new iter-
ation involving generalized a-nonexpansive mappings. If S is a is a mapping on convex subset K of a
Banach space E, then the process as follows:

a, €K,
c, =S(Q-9¢,a, +9¢,5a,),
b, =Sc,, (1.1

a,, =S(Q-y,)Sc, +v,Sb,),

where {¢ } and {y } are sequences in (0,1). Authors showed that their process converges faster than
the many known iterations.

In this paper, we prove some convergence results involving the iteration process (1.1) for gener-
alized a-Reich-Suzuki nonexpansive mappings which is bigger class of mappings than the class of
generalized a-nonexpansive mappings. Thus, our results are the genuine generalization of results of
Ullah et al. [24] and Temir and Korkut [25]. Further, we construct a numerical example which justify
the our findings over the the existing iteration processes. In the last, we provide the solution of split
feasibility problem.

2. Preliminaries

For making our paper self contained, we collect some basic definitions and needed results.

Definition 1. A Banach space E is said to be uniformly convex if for each ¢ € (0,2] thereisa é >0 such
that for a,b e E with ||a||<1, ||b||<1 and ||a—b||> ¢, we have

a+b

‘<1—5.

Definition 2. A Banach space E is said to satisfy the Opial’s condition if for any sequence {a } in E
which converges weakly to a € E i.e. a, —a implies that

limsup||a, —al||<limsup| a, —b]|

n—o n—o

forall be £ with b #a.
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Examples of Banach spaces satisfying this condition are Hilbert spaces and all # spaces (1 < p < ).
On the other hand, I”[0,2x] with 1< p # 2 fail to satisfy Opial’s condition.

A mapping S: K — E is demiclosed at b € E if for each sequence {a } in K and each a e E, a, —a
and Sa, — b imply that a € K and Sa =b.

Let K be a nonempty closed convex subset of a Banach E, and let {a } be a bounded sequence in E.
For a € E write:

r(a,{a,}) =limsupd(a,a,).

The asymptotic radius of {a } relative to K is given by
r({a,}) =inf{r(a,a,):a € K}
and the asymptotic center A(K,{a }) of {a } is defined as:
A(K{a,})=tae K :r(a,{a,}) =r(K,{a,})}

It is known that, in a uniformly convex Banach space, A(K,ia }) consists of exactly one point. The fol-
lowing lemma due to Schu [26] is very useful in our subsequent discussion.

Lemma 1. Let E be a uniformly convex Banach space and {t } be any sequence suchthat0< p<t, <q<1
for some p,q e R and for all n>1. Let {a } and {b } be any two sequences of E such that limsup | a, [|[<T,

n—o

limsup||b, |<r and limsup||t,a, + (1 —-¢,)b, [|=r for some r>0. Then, lim| a, -b, ||=0.
n—o

n—»oo n—oo

Recently, Pandey et al. [6] introduced generalized a-Reich-Suzuki nonexpansive mapping which
properly contains the Reich-Suzuki nonexpansive and generalized o-nonexpansive mappings.
Definition runs as follows:

Definition 3. [6] Let K be a nonempty subset of a Banach space X. A self map S: K — K is said to
be generalized o-Reich-Suzuki nonexpansive mapping if there exist an o €[0,1) and for each x,y € K

1
Ellx—Sx <2 =y =l Sx - Sy ||< max{P(x,y), Q(x, )}

where
P,y)=alSx—x|+a|Sy-y|[+QA-2a)[|x -y
and
Qx,y)=al|Sx -yl +a | Sy-x|+1-2a)[[x-y].
The following results are very important to get our results:

Lemma 2. [6] Let K be a nonempty subset of a Banach space E and S : K — K a generalized o-Reich-
Suzuki nonexpansive mapping. Then,

e F(S) is closed. Moreover, if E is strictly convex and K is convex, then F(S) is convex.
o If F(S)=J, then S is quasi-nonexpansive.
3+a

* lla-Sb|< la-Sall+]la-bl

1-«a
for all a and b e K.

The above lemma shows that generalized a-Reich-Suzuki nonexpansive mapping satisfies condi-

tion (E) with 1 :G’* o

). Therefore generalized a-nonexpansive, Reich-Suzuki type nonexpansive
-

and generalized a-Reich-Suzuki nonexpansive mapping belong to the class of mappings satisfying the
condition (E).
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Lemma 3. [19] Let S be ageneralized o-Reich-Suzuki nonexpansive mapping defined on a nonempty
closed subset K of a Banach space E with the Opial property. If a sequence {a } converges weakly to c
and lim || Sa, —a, ||=0, then (I - S) is demiclosed at zero.

3. Convergence Results

First, we prove few lemmas which will be useful in obtaining convergence results.

Lemma 4. Let S be a generalized a-Reich-Suzuki nonexpansive mapping defined on a nonempty
closed convex subset K of a Banach space E with F(S) # . Let {a } be the iterative sequence defined by
the iteration process (1.1). Then, lim ||a, — p || exists for all p € F(S).

Proof. Let p e F(S). In view of second part of Lemma 2, S is quasi-nonexpansive hence we have
e, —pl=lS(A-9¢,)a, +¢,5q,)- Pl
S|| (1 _¢n)an + ¢n8an - P ||

<A-¢)lla, -pl+¢,lSa, —pl (3.1)
<A-¢)lla, -pl+¢,lla, -pl
=lla, - pll
and
16, —plI=llSc, —pll
<lla, - pll. 2
Using (3.1) and (3.2), we get
@ —PII=I1S(A-w,)Sc, +v,5b,) - pll
<A -y,)Sc, +v,Sb, - p||
<A-y,) IS, —pll+v,|Sb, —pll (3.3)
<lle, = pll
<lla, —pll.

Thus, {|a, — p|}} is bounded and non-increasing sequence of reals and hence lim || a, — p|| exists.
n—oo

Lemma 5. Let S be a generalized a-Reich-Suzuki nonexpansive mapping defined on a nonempty
closed convex subset K of a uniformly convex Banach space E. Let {a_} be the iterative sequence defined
by the iteration process (1.1). Then, F(S) # @ if and only if {a } is bounded and lim || Sa, —a, ||=0.

Proof. Suppose F(S) # & and let p € FI(S). Then, by Lemma 4, lim || a, — p|| exists. Let

lim | a, - p=d. (3.4)
From inequality (3.3), we have
l@,a —PlI=llc, - pl<lla, - pll. (3.5)
Owing to (3.4), we have
lim [|e, - p[|=d. (3.6)

Also, using the fact that S is quasi-nonexpansive we have ||Sa, — p||<||a, — p|l, which gives

limsup || Sa, — p||<d. (3.7)

n—oo
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From (3.1), we have
le, = plI<lA-¢,)a, +¢,Sa, - pl<|la, -pl
which on using (3.4) and (3.6) gives
lim |1 -¢,)a, +¢,5a, - pl=d. (3.8)
Using (3.4), (3.7), (3.8) and Lemma 1, we conclude that 1132 |Sa, —a, ||=0. Conversely, suppose that
{a,} is bounded and lim ||a, —Sa, ||=0. Let p € A(K,{a, }), we have

r(Sp;ia, }) =limsup @, - Spl|

n—o

3 . .
£[1+ajhmsup||8an -a, | +limsup|la, — p|
-a

n—o n—o

=limsup|a, - p||

n—o0

=r(p,ia,}).

This implies that Sp € A(K,{a,}). Since E is uniformly convex, A(K,{a,}) is singleton, therefore we
get Sp = p.

Theorem 1. Let S be a generalized a-Reich-Suzuki nonexpansive mapping defined on a nonempty
closed convex subset K of a Banach space E which satisfies the Opial’s condition with F(S) = J. If {a }

is the iterative sequence defined by the iteration process (1.1), then {a_} converges weakly to a fixed point
of S.

Proof. Let pe F(S). Then, from Lemma 4 lim ||a, — p|| exists. In order to show the weak conver-
n—oo

gence of the iteration process (1.1) to a fixed point of S, we will prove that {a } has a unique weak
sub sequential limit in F(S) For this, let {a, } and {ank} be two subsequences of {a } which converges

weakly to v and v respectively. By Lemma 4, we have lim ||Sa, —a, ||=0 and using the Lemma 3, we
n—oo

have I — S is demiclosed at zero. So u,v e F(S).
Next, we show the uniqueness. Since u,v € F(S), so lim ||a, —u|| and lim ||a, —v|| exists. Let u#v.
Then, by Opial’s condition, we obtain e S

limla, —ul|=lim|la, —ul|
n—oo J—0 J
<lim|la, -v|
joe T
=lim|a, —v||
n—o
=lim|a, —v
lim||a, ~v]
<lim|la, —ull
k—o0 k
=lim|a, —u||
n—o
which is a contradiction, so u =v. Thus, {a } converges weakly to a fixed point of S.
Now, we establish some strong convergence results.

Theorem 2. Let K be a nonempty closed convex subset of a uniformly convex Banach space E and
S: K — K beageneralized a-Reich-Suzuki nonexpansive mapping with F(S) # @. If{a } is defined by the
iteration process (1.1), then {a } converges strongly to a point of F(S) if and only if lim inf d(a,,F(S)) =0.

Proof. If the sequence {a } converges to a point p € F(S), then it is obvious that liminf d(a,, F(S)) = 0.
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For the converse part, assume that liminf d(a,,F(S)) =0. From Lemma 4, we have lim ||a, — p||
exists for all p € F(S), which gives A o

l&,., = PlI<]l@, - p|| for any p e F(S)

n+l
which yields

d(a,.,,F(S)<d(a,,F(S)). (3.9

n+l?

Thus, {d(a,,F(S))} forms a non-increasing sequence which is bounded below by zero as well, so we get
that limd(a,, F(S)) exists. As, liminf d(a,, F'(S)) =0 so limd(a,,F(S)) =0.

. . 1
Now, there exists a subsequence {a, } of {a } and a sequence {uj} In F(S) such that [|a, —u;|< o
for all j e N. From the proof of Lemma 4, we have

< < 1
la,  —ull<la, —u;l<—

jy 9J "
Using triangle inequality, we get
T P A [ [
<t 1
2J+1 9J
1
< —
2/

—>0asj— .

So, {uj} 1s a Cauchy sequence in F'(S). By Lemma 2, F'(S) is closed, so {uj} converges to some u € F(S).
Again, owing to triangle inequality, we have

la, —uli<lia, —u;l+llw-ul.
Letting j — o, we have {a, | converges strongly to u € F'(S).
Since lim ||a, —u|| exists by Lemma 4, therefore {a } converges strongly to u € F(S).
n—oo

A mapping S: K — K 1is said to satisfy the Condition (A) ([28]) if there exists a nondecreasing func-
tion f :[0,00) — [0,00) with f(0) =0 and f(r) > 0 for all r € (0,00) such that ||a — Sa||> f(d(a, F(S))) for all
a € K, where d(a, F(S))=inf{|a-p||: p e F(S)}.

Now, we present a strong convergence result using the Condition (A).

Theorem 3. Let K be a nonempty closed convex subset of a uniformly convex Banach space E and
S:K — K be a generalized a-Reich-Suzuki nonexpansive mapping with F(S)= Q. If S satisfies the
Condition (A) and {a } is defined by the iteration process (1.1), then {a } converges strongly to a point
of F(S)

Proof. From 3.9, limd(a,, F(S)) exists.
Also, by Lemn::g we have lim||a, - Sa, ||=0.
It follows from the Conditior:zoA) that
lim f(d(a,, F(S)) < lim |la, - Sa, || =0,

that lim f(d(a,, F'(S))) =0.

Since f is a non decreasing function satisfying f(0)=0 and f(r) >0 for all r €(0,x), therefore
limd(a,,F(S))=0.

By Theorem 2, the sequence {a } converges strongly to a point of F(S).
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4. Numerical Example

In this section, we construct following example of a generalized a-Reich Suzuki nonexpansive mapping.

Example 4.1: Define a mapping S:[-1,1] - [-1,1] by

—x

—  x€[-1,0
1 [-1,0)

Sx=|-x xe¢ [0,1]/L.
11

0 3c=i
11
1
Forxzﬁandyzl,wehave
1 1 10
—d(x,Sx)=—<—=d(x,y),
2 ( ) 22 11 (.5)

but
d(Sx,Sy)=1> % =d(x,y).

Thus S does not satisfy condition (C). Now we show that S satisfies the condition (E). We consider
different cases as follows:

(1) Letx,ye[-1,0), we have
d(x,Sy) < d(x,85x) + d(Sx,Sy)
1
<d(x,Sx)+—|y-
(x,Sx) + 1 ly—x|
<d(x,Sx)+d(x,y).

1
i) Letx,ye[0,1)/—,
(ii) yelo1 o

d(x,Sy) <d(x,Sx) + d(Sx,Sy)
<d(x,Sx)+d(x,y).

(i11) Let x €[-1,0) and y e [0,1]/%,

dlx,Sy)=lx+yl<lx|+]yl

S%|x|+|x—y|(asx<0andy20)

=d(x,85x) +d(x,y).

(iv) Let x c[-1,0) and y = %

12
d(x,Sy) = <= +
(x,8y)=|x| 11le

;|
x _——

11
=d(x,Sx) +d(x,y).
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1 1
Let 0,1]/— and y=—
(v) Letxe] ]11 and y 1

d(x,Sy)=lx1<2|x |+

i
x —_—
11
=d(x,8x) +d(x,y).
Thus S satisfy the condition (E) with u >1 and has a fixed point 0. Now, using above example, we will
show that Iteration (1.1) converges faster than S-iteration, Abbas iteration, Thakur New iteration,

M-iteration and K*-iteration. Let o, =0.75, , =0.45, y, =0.15 for all n e N and x, =0.3, then we get
the following Table 1 of iteration values and graph.

5. Application

If C and @ are nonempty, closedand convex subsets of two real Hilbert spaces H, and H, respectively
and A:H, » H, is a bounded and linear operator. Then, the split feasibility problem (abbreviate
SFP) is to find a € C such that

Aa Q. (5.1)

If the solution set Q={a € C: Aa € @} = C " A'Q of the SFP (5.1) is nonempty, then Q is closed, convex

and nonempty set. Censor and Elfving [29] solved the class of inverse problems by using SFP. In 2002,
Byrne [30] introduced CQ-algorithm for solving the SFP. In this, the iterative step a, is calculated as
follows:

Uy =Po[I-yA (I -Py)Ala, k>0, (5.2)
2 * * *
where 0 <y < W » P and P, denote the projections onto sets C and @, respectivelyand A : H, — H,

is the adjoint of A.
Feng et al. [31] proved the following important result:

Lemma 6. Let operator S = P,[I - yA' (I - P,)A], where 0 <y < || 2 Then, S is a nonexpansive map.

Al*
Any a € C is the solution of SFP if and only if it solves the following fixed point equation:
P[I-yA*(I-Py)Ala=a,acC.

So, the solution set Q is equal to the fixed point set of S, i.e, F(S)=Q=Cn A'Q # . For details, one
can refer [32, 33].

As S=P,[I- yA'(I - P,)A] is a nonexpansive map and owing to Lemma 6, it generalized a-nonex-
pansive mapping for a = 0. Hence by using Theorem 1, we get the following main result:

Theorem 4. If {a } is the sequence generated by the iterative algorithm (1.1) with S=P,[I —yA"(I —Fy)A]
then, {a } converges weakly to the solution of SFP (5.1).

By using Theorem 2, we have the following convergence theorem:

Theorem 5. If{a } is the sequence generated by the iterative algorithm (1.1) with S=P,[I - yA (I —Fy)A]
then, {a } converges strongly to the solution of SFP (5.1) if and only if liminf d(a,,Q) = 0.
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Figure 1: Graph corresponding to Table 1.

6. Conclusion

In this paper we studied the convergence behaviour of an iteration scheme introduced by Ullah
et al. and Temir and Korkut [25] in respect of generalized a-Reich-Suzuki nonexpansive mapping.
Theorems 1, 2 and 3 of our paper are main convergence theorems which generalized the Theorems 3.3
and 3.4 of Ullah et al. [24] and Theorem 2.2 and 2.3 of Temir and Korkut [25].
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