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Abstract
The objective of this article is to study a three step iteration process in the framework of Banach spaces 
and obtain convergence results for generalized α-Reich-Suzuki nonexpansive mappings. We also pro-
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1. Introduction

Fixed point theorems are really important because of their applications. Banach fixed point result 
is the most famous fixed point theorem. It has only two conditions, underlying mapping must be con-
traction and involved space must be complete. Its wide applications to different fields of mathematics 
as well as out side mathematics are well known. Researchers generalized this great theorem in two 
ways: either by weakening the involved contraction condition or via generalizing the metric structure. 
Banach fixed point theorem is not satisfied by the arbitrary nonexpansive mapping which is very 
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natural class of mappings. Hence in 1965, Kirk [1] proved a very basic existence results in respect of 
nonexpansive mappings. After this, many generalization of nonexpansive mappings came into pic-
ture. Generalizations due to Suzuki [2], Garcia et al. [3] and Aoyama and Kohsaka [4] are worth men-
tioning. It is worth mentioning that nonexpansive mappings are always continuous but geenralized 
nonexapnsive mappings need not be continuous in general. In 2017, Pant and Shukla [5] introduced 
the class of generalized α-nonexpansive mappings and established some existence and convergence 
theorems for the newly introduced class of mappings.

In 2018, Pandey et al. [6] introduced the class of generalized α-Reich-Suzuki nonexpansive map-
pings and obtained convergence theorems.

Anothor direction of fixed point theory is to construct iteration process to reach fixed points of non-
linear mappings. Mann iteration [7] and Ishikawa iteration [8] are one and two step process. In 2000, 
Noor studied the convergence criteria of the three-step iteration method for solving general variational 
inequalities and related problems. Glowinski and Le Tallec [9] employed three-step iterative approaches 
to find solutions for the problem of elastoviscoplasticity, eigenvalue computation and the theory of liquid 
crystals. In [9], it was shown that the three-step iterative process yields better numerical results than 
the estimated iterations in two and one steps. For concrete application of fixed point iteration process 
one can see [10–14]. Owing to importance of these study, many three step iteration due to Noor [15], 
Agarwal et al. iteration [16], Abbas and Nazir iteration [17], Thakur et al. iterations [18, 19], M* itera-
tion [20], M iteration [21], K iteration [22] and K* iteration [23] came into picture.

Motivated by foregoing studies, Ullah et al. [24] and Temir and Korkut [25] introduced a new iter-
ation involving generalized α-nonexpansive mappings. If S is a is a mapping on convex subset K of a 
Banach space E, then the process as follows:
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where {φn} and {ψn} are sequences in (0,1). Authors showed that their process converges faster than 
the many known iterations.

In this paper, we prove some convergence results involving the iteration process (1.1) for gener-
alized α-Reich-Suzuki nonexpansive mappings which is bigger class of mappings than the class of 
generalized α-nonexpansive mappings. Thus, our results are the genuine generalization of results of 
Ullah et al. [24] and Temir and Korkut [25]. Further, we construct a numerical example which justify 
the our findings over the the existing iteration processes. In the last, we provide the solution of split 
feasibility problem.

2. Preliminaries

For making our paper self contained, we collect some basic definitions and needed results.

Definition 1. A Banach space E is said to be uniformly convex if for each � � ( , ]0 2  there is a � � 0  such 
that for a b E, ∈  with || ||a ≤1, || ||b ≤1 and || ||a b� � � , we have

a b�
� �

2
1 � .

Definition 2. A Banach space E is said to satisfy the Opial’s condition if for any sequence {an} in E 
which converges weakly to a E∈  i.e. a an⇀  implies that

limsup limsup
n

n
n

na a a b
�� ��

� � �|| || || ||

for all b E∈  with b a≠ .
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Examples of Banach spaces satisfying this condition are Hilbert spaces and all lp spaces ( )1 � � �p .  
On the other hand, Lp[ , ]0 2π  with 1 2� �p  fail to satisfy Opial’s condition.

A mapping  : K E→  is demiclosed at b E∈  if for each sequence {an} in K and each a E∈ , a an⇀  
and a bn →  imply that a K∈  and a b= .

Let K be a nonempty closed convex subset of a Banach E, and let {an} be a bounded sequence in E. 
For a E∈  write:

r a a d a an
n

n( ,{ }) ( , ).�
�

limsup
�

The asymptotic radius of {an} relative to K is given by
r a r a a a Kn n({ }) { ( , ) : }� �inf

and the asymptotic center A(K,{an}) of {an} is defined as:
A K a a K r a a r K an n n( ,{ }) { : ( ,{ }) ( ,{ })}.� � �

It is known that, in a uniformly convex Banach space, A(K,{an}) consists of exactly one point. The fol-
lowing lemma due to Schu [26] is very useful in our subsequent discussion.

Lemma 1. Let E be a uniformly convex Banach space and {tn} be any sequence such that 0 1� � � �p t qn  
for some p q, ∈ and for all n ≥1. Let {an} and {bn} be any two sequences of E such that limsup

n
na r

��
�|| || ,  

limsup
n

nb r
��

�|| ||  and limsup ( )|| ||
n

n n n nt a t b r
��

� � �1  for some r ≥ 0. Then, lim .
n n na b
��

� �|| || 0

Recently, Pandey et al. [6] introduced generalized α-Reich-Suzuki nonexpansive mapping which 
properly contains the Reich-Suzuki nonexpansive and generalized α-nonexpansive mappings. 
Definition runs as follows:

Definition 3. [6] Let K be a nonempty subset of a Banach space X. A self map  : K K→  is said to 
be generalized α-Reich-Suzuki nonexpansive mapping if there exist an � �[ , )0 1  and for each x y K, ∈

1
2

|| || || || || ||x x x y x y max P x y Q x y� � � � � �   { ( , ), ( , )}

where
P x y x x y y x y( , ) ( ) .� � � � � � �� � �|| || || || || ||  1 2

and
Q x y x y y x x y( , ) ( ) .� � � � � � �� � �|| || || || || ||  1 2

The following results are very important to get our results:

Lemma 2. [6] Let K be a nonempty subset of a Banach space E and  : K K→  a generalized α-Reich- 
Suzuki nonexpansive mapping. Then,

• F ( )  is closed. Moreover, if E is strictly convex and K is convex, then F ( )  is convex.
• If F ( ) � � , then   is quasi-nonexpansive.

• || || || || || ||a b a a a b� �
�
�

� � � 
3
1

�
�

for all a and b K∈ .

The above lemma shows that generalized α-Reich-Suzuki nonexpansive mapping satisfies condi-

tion (E) with � �
�

�
�
�

�
�
�

�
�
�

3
1

. Therefore generalized α-nonexpansive, Reich-Suzuki type nonexpansive 

and generalized α-Reich-Suzuki nonexpansive mapping belong to the class of mappings satisfying the 
condition (E).
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Lemma 3. [19] Let   be ageneralized α-Reich-Suzuki nonexpansive mapping defined on a nonempty 
closed subset K of a Banach space E with the Opial property. If a sequence {an} converges weakly to c 
and lim ,

n n na a
�

� �
�

|| || 0  then (I −  ) is demiclosed at zero.

3. Convergence Results

First, we prove few lemmas which will be useful in obtaining convergence results.

Lemma 4. Let   be a generalized α-Reich-Suzuki nonexpansive mapping defined on a nonempty 
closed convex subset K of a Banach space E with F ( ) . � �  Let {an} be the iterative sequence defined by 
the iteration process (1.1). Then, lim

n na p
�

�
�

|| ||  exists for all p F∈ ( ).

Proof. Let p F∈ ( ).  In view of second part of Lemma 2,   is quasi-nonexpansive hence we have
|| || || ||

|| ||
c p a a p

a a p
n n n n n

n n n n
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(3.1)

and
|| || || ||

|| ||
b p c p

a p
n n

n
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. (3.2)

Using (3.1) and (3.2), we get
|| || || ||
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Thus, { }|| ||a pn −  is bounded and non-increasing sequence of reals and hence lim
n na p
�

�
�

|| ||  exists.

Lemma 5. Let   be a generalized α-Reich-Suzuki nonexpansive mapping defined on a nonempty 
closed convex subset K of a uniformly convex Banach space E. Let {an} be the iterative sequence defined 
by the iteration process (1.1). Then, F ( ) � �  if and only if {an} is bounded and lim .

n n na a
�

� �
�

|| || 0

Proof. Suppose F ( ) � �  and let p F∈ ( ).  Then, by Lemma 4, lim
n na p
�

�
�

|| ||  exists. Let

lim
n na p d
�

� �
�

|| || . (3.4)

From inequality (3.3), we have
|| || || || || ||a p c p a pn n n� � � � � �1 . (3.5)

Owing to (3.4), we have
lim
n nc p d
�

� �
�

|| || . (3.6)

Also, using the fact that   is quasi-nonexpansive we have || || || ||a p a pn n� � � , which gives

limsup
n

na p d
�

� �
�

|| || . (3.7)
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From (3.1), we have
|| || || || || ||c p a a p a pn n n n n n� � � � � � �( )1 � � 

which on using (3.4) and (3.6) gives
lim
n n n n na a p d
�

� � � �
�

� �|| ||( ) .1  (3.8)

Using (3.4), (3.7), (3.8) and Lemma 1, we conclude that lim
n n na a
�

� �
�

|| || 0.  Conversely, suppose that 

{an} is bounded and lim
n n na a
�

� �
�

|| || 0.  Let p A K an∈ ( ,{ }), we have

r p a a p

a a

n
n

n
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n
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This implies that p A K an∈ ( ,{ }).  Since E is uniformly convex, A K an( ,{ })  is singleton, therefore we 
get p p= .

Theorem 1. Let   be a generalized α-Reich-Suzuki nonexpansive mapping defined on a nonempty 
closed convex subset K of a Banach space E which satisfies the Opial’s condition with F ( ) . � �  If {an} 
is the iterative sequence defined by the iteration process (1.1), then {an} converges weakly to a fixed point 
of  .

Proof. Let p F∈ ( ) . Then, from Lemma 4 lim
n na p
�

�
�

|| || exists. In order to show the weak conver-
gence of the iteration process (1.1) to a fixed point of  , we will prove that {an} has a unique weak 
sub sequential limit in F( ) For this, let { }anj  and { }ank  be two subsequences of {an} which converges 
weakly to u and v respectively. By Lemma 4, we have lim

n n na a
�

� �
�

|| || 0  and using the Lemma 3, we 
have I −   is demiclosed at zero. So u v F, ( )∈  .

Next, we show the uniqueness. Since u v F, ( )∈  , so lim
n na u
��

�|| || and lim
n na v
��

�|| || exists. Let u v≠ . 
Then, by Opial’s condition, we obtain

lim lim

lim

lim

n n j n

j n

n n

a u a u

a v

a

j

j

�� ��

��

��

� � �

� �

� �

|| || || ||

|| ||

|| vv

a v

a u

a u

k n

k n

n n

k

k

||

|| ||

|| ||

|| ||

� �

� �

� �

��

��

��

lim

lim

lim

which is a contradiction, so u v= . Thus, {an} converges weakly to a fixed point of  .
Now, we establish some strong convergence results.

Theorem 2. Let K be a nonempty closed convex subset of a uniformly convex Banach space E and 
 : K K→  be a generalized α-Reich-Suzuki nonexpansive mapping with F ( ) . � �  If {an} is defined by the 
iteration process (1.1), then {an} converges strongly to a point of F( ) if and only if lim inf ( , ( )) .

n nd a F
��

� 0

Proof. If the sequence {an} converges to a point p F∈ ( ) , then it is obvious that lim inf ( , ( )) .
n nd a F
��

� 0
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For the converse part, assume that lim inf ( , ( )) .
n nd a F
��

� 0  From Lemma 4, we have lim
n na p
��

�|| || 
exists for all p F∈ ( ) , which gives

|| || || ||a p a p p Fn n� � � � �1 �for�any� ( )

which yields
d a F d a Fn n( , ( ) ( , ( )).� �1   (3.9)

Thus, { ( , ( ))}d a Fn   forms a non-increasing sequence which is bounded below by zero as well, so we get 
that lim

n nd a F
��

( , ( ))  exists. As, lim inf ( , ( ))
n nd a F
��

� 0  so lim
n nd a F
��

�( , ( )) . 0

Now, there exists a subsequence { }anj  of {an} and a sequence {uj} in F ( )  such that || ||a un j jj
� �

1
2

 
for all j∈. From the proof of Lemma 4, we have

|| || || ||a u a un j n j jj j�
� � � �

1

1
2
.

Using triangle inequality, we get
|| || || || || ||u u u a a uj j j n n j

j j

j

j j� �

�

�

� � � � �

� �

�

�

� �1 1

1

1

1 1

1
2

1
2

1
2
0�aas�j��.

So, {uj} is a Cauchy sequence in F ( ).  By Lemma 2, F ( )  is closed, so {uj} converges to some u F∈ ( ).
Again, owing to triangle inequality, we have

|| || || || || ||a u a u u un n j jj j
� � � � � .

Letting j �� , we have { }anj  converges strongly to u F∈ ( ).
Since lim

n na u
��

�|| || exists by Lemma 4, therefore {an} converges strongly to u F∈ ( ) .
A mapping  : K K→  is said to satisfy the Condition (A) ([28]) if there exists a nondecreasing func-

tion f : [ , ) [ , )0 0� � �  with f ( )0 0=  and f r( ) > 0  for all r� �( , )0  such that || ||a a f d a F� � ( ( , ( )))  for all 
a K∈ , where d a F inf a p p F( , ( )) { : ( )}. � � �|| ||

Now, we present a strong convergence result using the Condition (A).

Theorem 3. Let K be a nonempty closed convex subset of a uniformly convex Banach space E and 
 : K K→  be a generalized α-Reich-Suzuki nonexpansive mapping with F ( ) . � �  If   satisfies the 
Condition (A) and {an} is defined by the iteration process (1.1), then {an} converges strongly to a point 
of F( )

Proof. From 3.9, lim
n nd a F
��

( , ( ))  exists.
Also, by Lemma 5 we have lim

n n na a
��

� �|| || 0.
It follows from the Condition (A) that

lim lim
n n n n nf d a F a a
�� ��

� � �( ( , ( ))) , || || 0

that lim
n nf d a F
��

�( ( , ( ))) . 0
Since f is a non decreasing function satisfying f ( )0 0=  and f r( ) > 0  for all r� �( , )0 , therefore 

lim
n nd a F
��

�( , ( )) . 0
By Theorem 2, the sequence {an} converges strongly to a point of F( ).



M.F. Khan, I. Uddin, C. Swarup, Results in Nonlinear Anal. 6 (2023), 1–11. 7

4. Numerical Example

In this section, we construct following example of a generalized α-Reich Suzuki nonexpansive mapping.

Example 4.1: Define a mapping  : [ , ] [ , ]� � �1 1 1 1  by

x

x x

x x

x
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�
� �

� �

�

�

�

�
�
�
�
�
�
�

11
1 0

0 1 1
11

1
11

0

�

� /

[ , )

[ , ] .

For x =
1

11
 and y =1, we have

1
2

1
22

10
11

d x x d x y( , ) ( , ), � � �

but

d x y d x y( , ) ( , ).  � � �1 10
11

Thus   does not satisfy condition (C). Now we show that   satisfies the condition (E). We consider 
different cases as follows:
(i) Let x y, [ , )� �1 0 , we have

d x y d x x d x y

d x x y x

d x x d x y

( , ) ( , ) ( , )

( , ) | |

( , ) ( , ).

   





� �

� � �

� �

1
11

(ii) Let x y, [ , ]∈ 0 1 1
11
/ ,

d x y d x x d x y
d x x d x y

( , ) ( , ) ( , )
( , ) ( , ).

   


� �
� �

(iii) Let x� �[ , )1 0  and y∈[ , ]0 1 1
11
/ ,

d x y x y x y

x x y x y

d x x d

( , ) | | | | | |

| | | |( )

( , )





� � � �

� � � � �

� �

12
11

0 0as and

(( , ).x y

(iv) Let x� �[ , )1 0  and y =
1

11
,

d x y x x x

d x x d x y

( , ) | | | |

( , ) ( , ).





� � � �

� �

12
11

1
11
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(v) Let x ∈[ , ]0 1 1
11
/  and y =

1
11

d x y x x x

d x x d x y

( , ) | | | |

( , ) ( , ).





� � � �

� �

2 1
11

Thus   satisfy the condition (E) with � �1 and has a fixed point 0. Now, using above example, we will 
show that Iteration (1.1) converges faster than S-iteration, Abbas iteration, Thakur New iteration, 
M-iteration and K*-iteration. Let �n � 0 75. , �n � 0 45. , �n � 0 15.  for all n∈  and x1 0 3= . , then we get 
the following Table 1 of iteration values and graph.

5. Application

If C and Q are nonempty, closedand convex subsets of two real Hilbert spaces H1 and H2 respectively 
and A H H: 1 2→  is a bounded and linear operator. Then, the split feasibility problem (abbreviate 
SFP) is to find a C∈  such that

Aa Q∈ . (5.1)

If the solution set � � � � � � �{ : }a C Aa Q C A Q1  of the SFP (5.1) is nonempty, then Ω is closed, convex 
and nonempty set. Censor and Elfving [29] solved the class of inverse problems by using SFP. In 2002, 
Byrne [30] introduced CQ-algorithm for solving the SFP. In this, the iterative step ak is calculated as 
follows:

a P I A I P A a kk C Q k� � � � �1 0[ ( ) ] , ,� * (5.2)

where 0
2
2� ��

|| ||A
, PC and PQ denote the projections onto sets C and Q, respectively and A H H* * *: 2 1→  

is the adjoint of A.
Feng et al. [31] proved the following important result:

Lemma 6. Let operator  � � �P I A I P AC Q[ ( ) ],� *  where 0 2
2� ��

|| ||A
. Then,   is a nonexpansive map.

Any a C∈  is the solution of SFP if and only if it solves the following fixed point equation:
P I A I P A a a a CC Q[ ( ) ] , .� � � �� *

So, the solution set Ω is equal to the fixed point set of  , i.e, F C A Q( ) . � � � � ��� 1  For details, one 
can refer [32, 33].

As  � � �P I A I P AC Q[ ( ) ]� *  is a nonexpansive map and owing to Lemma 6, it generalized α-nonex-
pansive mapping for α = 0. Hence by using Theorem 1, we get the following main result:

Theorem 4. If {an} is the sequence generated by the iterative algorithm (1.1) with  � � �P I A I P AC Q[ ( ) ]� *  
then, {an} converges weakly to the solution of SFP (5.1).

By using Theorem 2, we have the following convergence theorem:

Theorem 5. If {an} is the sequence generated by the iterative algorithm (1.1) with  � � �P I A I P AC Q[ ( ) ]� *  
then, {an} converges strongly to the solution of SFP (5.1) if and only if lim inf ( , )

n nd a
��

�� 0 .
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6. Conclusion

In this paper we studied the convergence behaviour of an iteration scheme introduced by Ullah 
et al. and Temir and Korkut [25] in respect of generalized α-Reich-Suzuki nonexpansive mapping. 
Theorems 1, 2 and 3 of our paper are main convergence theorems which generalized the Theorems 3.3 
and 3.4 of Ullah et al. [24] and Theorem 2.2 and 2.3 of Temir and Korkut [25].
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