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1. Introduction

Approximation is basically replacement of some thing complicated with the easier one. Approximation 
of functions for its use in computer calculations, a member of a given set, or some data has always 
attracted Mathematicians as it links both theoretical and applied Mathematics. Any development can 
be used in many industrial and commercial fields and thus requires further development in the sub-
ject to overcome challenges. Construction of Bernstein polynomials in 1912 is one of the elegent proof 
of the Weierstrass approximation theorem [3, 17] by S.N. Bernstein. In Computer-aided geometric 
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design (CAGD), shape of the curves and surfaces are mimiced using the basis of Bernstein type poly-
nomials [20].

Lupaş in 1987 [25] and Phillips [28] in 1997 respectively constructed the q-analogue of Bernstein 
polynomials [3] which are rational and polynomial respectively. A survey of the obtained results 
and references on the subject can be found in [27]. For results related to Lupaş, one can refer cf. [21, 
Chapter∼10].

Approximating operators of Bernstein type on the tetrahedrons have uses in Computer-aided geo-
metric design [23] and finite element analysis. For some recent literatures related to Bernstein type 
operators (see): λ-Bernstein operators and its approximation properties by Q. B. Cai et al. in [5, 6], 
N. Braha et al. studied convergence properties of λ-Bernstein operators via power series summability 
methods [14], Two dimentional Bernstein type operators and Kantorovich modifications by T. Acar 
in [12, 13]. Mursaleen et al studied error estimation for q-Bernstein shifted operators and general-
ized q-Bernstein Schurer operators in [8, 9]. One can refer [1, 14] for details related to Bernstein and 
its bivariate form with applications in CAGD. The blending interpolation operators were studied by 
Barnhill et al. in [22, 23, 24]. For interpolation on triangles and error bound, one can refer [7, 26]. 
Schumaker studied fitting surfaces to scattered data in [29]. For results related to Phillips and Lupaş 
type Bernstein operators on triangles, one can see recent work [10, 11]. Approximation properties 
for Bernstein type polynomials and its remainder terms are evaluated by D. D Stancu in [30, 31], 
R. Paltanea studied Durrmeyer type operators on a simplex in [16], A. Kajla and T. Acar studied blend-
ing type approximation by Bernstein durrmeyer type operators and α-Bernstein operators in [18, 19].

In [4], authors studied Bernstein-type Operators on Tetrahedrons. Motivated by their work, in this 
paper, our purpose is to construct Lupaş type q-Bernstein operators on tetrahedrons with all straight 
edges, on tetrahedrons with three curved edges defined by some functions and to study approximation 
properties. Classical Bernstein polynomials are used in [4], whereas we have used generalisation of 
Lupaş type q-Bernstein operators (rational). In case q = 1, it reduces to [4], thus due to presence of 
extra parameter q it has more flexibility in comparison to classical Bernstein polynomials.

2. Lupaş Type Operators on Straight Edges Tetrahedrons

Consider the tetrahedron Hd  with vertices V V h V h0 1 2= (0,0,0), = ( ,0,0), = (0, ,0) and V h3 = (0,0, ), with 
three edges τ τ τ1 2 3, ,  along the coordinate axes and with the edges T T T1 2 3, ,  (opposite to the vertex V0). 
Also, one denotes by σ σ σ012 013 023, ,  and σ123  the tetrahedron faces from the planes V V V V V V V V V0 1 2 0 1 3 0 2 3, ,  
and V V V1 2 3  respectively (see the left side of Figure 1). Let T ii , =1,2,3, be the triangles in which the 
planes P ii , =1,2,3, intersect the tetrahedron faces respectively in three points on the edges of tetrahe-
dron as depicted in Figure 1.

Figure 1: Tetrahedron with straight edges [4]
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We will consider the triangle T1 (as shown in Figure 2) to construct and study Lupaş Bernstein-type 
operators. Similar results can be obtained for the triangles T2 and T3.

2.1. Univariate Operators

For uniform partitions
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For details related to the approximation accuracy (degree of exactness, precision set), one can refer [4]. 
The precision set (pres(P)) and the degree of exactness (dex(P)) will yield the order of an approxima-
tion operator P.
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retains the same sign K t t h200( , , , ) 0, [0, ].� � � � �� � � �
It follows from the Mean Value Theorem that
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We obtain by doing a simple computation for � � �� � �[0, ]h
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Now,

( )R F h
m

M Fm q
q

,

2

200( , , )
8[ ]

�� � � � 6

Remark 2. Accordingly, the assessments of the remainder in the following formula are demonstrated.

F B F R Fn q n q= , ,
�� ���
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Product Operators
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Theorem 2.4. For real valued F,
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If 0 < 1q ≤ , then
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We have
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Figure 2: Triangle T1
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Moreover, if δ1 = 1
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3. Lupaş Type Operators on Three Curved Edged Tetrahedrons

Tetrahedron with three curved edges and its triangle are shown in Figure 3 and Figure 4.
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Theorem 3.2. If F C h( , , ) 0, 2 2 2� � � ��
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Remark 4. Analogous results take place for the remainder in the approximation formula
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Theorem 3.4. If F :Th → � , then P F Fmn,2 =  and Q F Fnm,2 =  on �3 123�S .
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Theorem 3.5. If F C h h( , , ) ([0, ] [0, ])� � � �� , then

( )R F h W F
m nmn q

p

q
,

2

( , , ) (1 ) (0,0, ); 1
[ ]

, 1
[ ]

� � � �� �
�

�

�
�

�

�

�
�

and

( )R F h W F
m nnm

Q

q q

( , , ) (1 ) ( ,0, ); 1
[ ]

, 1
[ ]

� � � �� � �
�

�

�
�

�

�

�
�

Figure 4: Triangle t1 [4]

Figure 3: Tetrahedron with three curved edges [4]
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Bookan Sum Operators: If S B Bmn m q n q= , ,
�� ���  and T B Bnm q n q m q, , ,= �� ���  are the Boolean sums of the 

operators Bm q,
��  and Bn q,

�� , then we have

Theorem 3.6. If F Th: → � , then S F Fmn =  and T F Fnm =  on S US USa13 023 123.

Theorem 3.7. If F C Th∈ ( ) , then
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Similar procedure will yield the inequality in computing the error for ( )F T Fnm q− , .
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