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Abstract
In this article a novel concept of C*-algebra-valued measure of non-compactness is defined. Using this 
concept, the well known fixed point theorems of Darbo, Sadovskii and Krasnoslskii are generalized. 
We present non-trivial examples and applications to validate the real utilization of our results.
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1. Introduction

Topological fixed point theory is more important in the sense of application point of view. In metric 
fixed point theory the contractive conditions shrinks the operator’s class, because a small class would 
be able to satisfy the contractive conditions. Schauder fixed point theorem [1] had been used for exis-
tence theory of linear and nonlinear operators with compact domains. Many questions were rosed on 
the compactness in this theorem, since there is a huge class of operators under non-compact domains. 
This problem was first addressed by Darbo [2], using the notions of measure of non-compactness 
defined by Kuratowski [3] and Istratescu [4]. The following are the theorems of Schauder and Darbo.

Theorem 1.1: [1] Let E  be a Banach space and let Ω be a compact and convex subset of E. Then, any 
continuous operator F :� ��  has at least one fixed point.
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Theorem 1.2: [2] Let E  be a Banach space and let Ω be a bounded, closed and convex subset of E. 
Then, any continuous operator k-set contraction has at least one fixed point.

In the next section, we will define the k-set contraction. Many generalizations of Drabo’s fixed point 
theorem by weakening the k-set contraction can be seen in the literature [5–9]. In 2016 Jleli et al., 
in [10] defined the notions of cone measure of non-compactness by replacing the set of reals with a 
real Banach space having normal cone. They proved fixed point theorem as a generalization of Darbo’s 
theorem and proved existence results for functional integral equations. This concept is further gen-
eralized in this direction by Deng et al., in 2018. They have also generalized the results of Darbo and 
Sadowski [11]. The abstract E -metric space of related fixed points results were studied in [12–14] 
Recently Ma et al., [15] defined C*-algebra valued metric space by replacing the set of real numbers   
by a unital C*-algebra. The next discussion about C*-algebra has been taken from Ma et al. Inspired 
from them we introduced the notion of C*-algebra valued measure of non-compactness.

First we recall the following definitions concerning C*-algebra.

Definition 1.3: A Banach algebra A  is an algebra over   that has a norm  .  relative to which A  is 
Banach apace and     ab a b≤  for all a b A, ∈ .

Definition 1.4: An involutive algebra A  is a complex algebra given together with an involution 
A A
a a

��
�
� � *

 such that:

( )* = * *,
( )* = *,
( )* = * *,
( *)* = .

a b a b
a a
ab b a
a a

� �

� �

Definition 1.5: A C*-algebra is a Banach involutive algebra A  over   satisfying the identity 
   a a a* = 2  for all a A∈ .

Definition 1.6: Let A  be a unital C*-algebra. Then

 1. a A∈  is self-adjoint if a a* = ,
 2. a a= * is positive if � ( ) [ )a � �0, , where σ ( )a  denotes the spectrum of a.
In this paper, we define the notion of C*-algebra valued measure of non-compactness and generalize 
the Darbo, Sadovskii and Krasnoselskii fixed point theorems. We finally present some applications to 
validate our results.

2. Main Results

Let   be a unital C*-algebra. A self-adjoint element a  in a C*-algebra   is positive if � ( ) [ )a � �0, . 
Denote by +  the set of all positive elements a  of . This allow us to define partial ordering  on the 
self-adjoint elements of . For a b,  self-adjoint, we say a b  if and only if b a� � � , and for a b≺  
means a b  with a b= , clearly  � �= : 0 .{ }a a 

Now, let us recall the definition [[16], Definition 3.1.3], before defining C*-algebra valued measure 
of non-compactness.

Let E  be a Banach space. The symbol X , ConvX  denotes the closure and closed convex hull of a 
subset X  of E , respectively. Moreover, ME  indicate the family of all non-empty and bounded subsets 
of E  and NE  indicate the family of all nonempty and relatively compact subsets.

Definition 2.1: [16] The function � : [0, ]ME � ��  is said to be a measure of non-compactness if it 
satisfy the following conditions:

 1. The family ker X XE� �= { : ( ) = 0}�M  is non-empty and ker E� � N ,
 2. µ µ( ) = ( ),X X
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 3. X Y X Y� �ifandonlyif � �( ) ( ),
 4. µ µ( ) = ( ),ConvX X
 5. � � � �� � �( ( ) ) ( ) ( ) ( )X Y X Y� � � � �1 1  for � �[ ]0,1 .
 6. If X En ∈ , X Xn n=  and X Xn n� �1 , for n =1,2,.... satisfying lim ( )

n nX��
� = 0 , implies �

�

�n nX X
=0

:=  is 
nonempty.

Let E  be a Banach space, and let ∑  denote the set of all bounded subsets of E. Then, we define the 
C*-algebra valued measure of non-compactness as follows:

Definition 2.2: Let E  be a Banach space. A mapping � :�� �  is called C*-algebra valued measure 
of non-compactness, if the following conditions hold:

  ( )MC1  For ���, �( )� = 0  implies Ω is pre-compact subset of E;

 ( )MC2  For � �1 2, ��  with � �1 2�  implies � �( ) ( )� �1 2 ;

 ( )MC3  For ���, � �( ) ( )� �= ;

 ( )MC4  For ���, � �( ( )) ( )co � �= , where co  denotes the convex hull;

 ( )MC5  For a decreasing sequence of sets { }�m ��  satisfying lim ( )
m m��

� � = 0, implies �
�

�m m=0
:=� �  

is nonempty;
 ( )MC6  � � � �� � �( ( ) ) ( ) ( ) ( )� � � �1 2 1 21 1� � � � �  for � �[ ]0,1 .

Remark 2.3: Let E  be a Banach space, and let ∑  denote the set of all bounded subsets of E. If the 
C*-algebra  = ,  then the C*-algebra-valued measure of non-compactness is an ordinary measure of 
non-compactness µ (defined in Definition 2.1), as +  of   is [0, ).��

Now, let us explain our definition with examples.

Example 2.4: Let E =   and consider the C*-algebra  = ( )M Rn n×  with 
|| ||= {|| ||: ,|| ||=1},A max Ax x x∈  where A  is the matrix in C*-algebra   with the partial order-
ing A B  iff B A� � � . Let α  denote the Kuratowski [3] measure of non-compactness of non-empty 
and bounded subset Q of a complete metric space ( , )X d , given by

� � � �( ) inf ( )Q Q S S
n

i i i= > 0 : , ,
=0

� � �
�
�
�

�
�
�

where δ  denotes the diameter of the set.
Let ∑  denote the set of all bounded subsets of . Then, for ��� , we define

�

� � � �

:
( ) = ( , , , ),1 2

��

� � �

� by
� � � �diag k k kn( ) ( ) ( )…

where ki > 0, i n=1,2,3,...,  are constants, and ” diag” denotes the diagonal matrix of the given 
 n-tuple(i.e., n-tuple is diagonal of n n×  matrix and all other elements are zero). Then, κ  is a C*-
algebra valued (i.e., matrix valued) measure of non-compactness.

Example 2.5: Let E L= � ( )�  and  = ,2L ( )Ω  where Ω is a Lebesgue measurable set. The set of all 
bounded linear operators on  will be denoted by B( ) . Then, B( )  is a C*-algebra with usual norm 
defined on operators. Let ∑  be the set of all bounded subsets of L� ( )� . Then, define

�
�
:

= . 0 = ,
�
� �
�

�
B

f f
( )

( ) ( )



by
for someM
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where M  is the measure of non-compactness defined on L∞  in [18]. Then, κ  is a C*-algebra valued 
(i.e., function valued) measure of non-compactness.

Now, we define a crucial definition to prove our first main result for finding fixed points of map-
pings using the notion of C*-algebra valued measure of non-compactness.

Definition 2.6: Let E  be a Banach space and Ω be a closed bounded and convex subset of E . A map-
ping F :� ��  is called A -set contraction if there exists A∈  with A <1 such that

� �( ( )) ( )F C A C A � (A)

for C�� .
Next, we prove our main result to generalize the fixed point results of Schauder and Darbo [1, 2].

Theorem 2.7 Every continuous A -set contraction F  on a Banach space E  has a fixed point.

Proof. Define a sequence Cn� � � �  such that C C0 = ,  C co F C C co F C C co F Cn n1 0 2 1 1= , = ,..., = .( ( )) ( ( )) ( ( ))+
Clearly Cn� � is a decreasing sequence. Consider

� � �( ) ( ( ( ))) ( ( ))C co F C F C nn n n� �1 = = 0,for all

therefore using ( )A  with properties of κ  we have

� �

�

� �

( ) ( ( ))
( )
( ( ) ) ( )

C F C
A C A
A A C A A A C A

A

n n

n

n n

n

�

�

�
� �

�
�

1

1
2

1
2

=

=





�

��

�

�

( )

( )

( )

C A

C A I

C A I n

n

n

n

0

0

1
2

2
2

0

1
2

2
2 0 .

�

� ��



 as

Hence, from ( )MC5 , �
�

�n nC C
=0

:=  is nonempty. Now, as

� � �( ) ( )C C C
n n n�

�
�

�

�
�

�

�
�= = 0,

=0


therefore C∞  is nonempty and compact. Since F  is continuous, therefore by consequence of Schauder’s 
fixed point theorem, F  has a fixed point.

Definition 2.8: Let E  be a Banach space and Ω be a closed bounded and convex subset of E . A map-
ping F :� ��  is called C*-condensing if

κ κ( ( )) ( )F C C≺ (B)

for any C�� .
The next theorem is a variant of Sadowskii’s fixed point theorem using C*-algebra valued measure 

of non-compactness.

Theorem 2.9 Let E  be a Banach space and Ω be a closed bounded and convex subset of E . If there 
exists some e0 ��  such that
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� �( { }) ( )Y e Y Y� �0 = .for �

Let F :� ��  be a continuous C*condensing operator. Then, F  has a fixed point.

Proof. Define

� � �= : .0{ ( ) ( ) }W e W F W W� � �and

Clearly, � ��  and Γ is nonempty. Now, set  = �
� � �W

W
� �

. We can check easily that e0 ∈  and   is 

closed and convex. Also F ( ) ⊆ , if we take Q con F e= .0( ( ) { }) ∪  Now, claim that  = .Q  For this, 
as e0 ∈  and F ( ) ⊆ , therefore Q ⊆ . For reverse inclusion Q ⊆   implise F F Q( ) ( ) � �  and 
e Q0 ∈  implies that Q�� . Hence  ⊆Q, which proves  = .Q  Using hypothesis of theorem, consider

� �

�

( ) ( ( ) { })
( ( ))

 



=
= .

0F e
F

�

Now to prove κ( ) = 0, suppose on contrary that κ( ) = 0 then by the definition of C*-condensing 
κ κ κ( ) ( ( )) ( )  = F ≺  a contradiction, so κ( ) = 0. Since   is pre-compact and closed, so is compact. 
Hence the application of Schauder’s fixed point theorem the operator F ↓  has a fixed point. This 
proves the theorem.

The importance of Krasnoselskii fixed point theorem is obvious for the existence of solutions of per-
turbed and neutral differential operators. The next theorem is the version of Krasnoselskii fixed point 
theorem in the setting of C*-algebra valued measure of non-compactness.

Theorem 2.10: Let E  be a Banach space and Ω be a closed bounded and convex subset of E . Let 
S F, :� ��  be continuous operators such that

 (a)  S  is an A -set contraction;
 (b)  F  is compact;
 (c)  ( )S F� �� �.
Then the solution of operator equation v Sv Fv= +  exists in Ω.

Proof. Set G S F= + , we show that G  is an A -set contraction. For this let C � � and consider

� �
� �
�

�

( ( )) (( )( ))
( ( )) ( ( ))
( ( )) ( )
(

G C S F C
S C F C
S C b

A C

=

0

�
�
�





using
)) ( )A a� using

which implies

� �(( )( )) ( )S F C A C A� � ,

Since G  is continuous A -set contraction, therefor it has a fixed point say z G z Sz Fz= = .( ) +  This 
proves the theorem.

Definition 2.11: A bounded sequence { }an  in a C*-algebra   is called central sequence such that

 a x xa nn n� � ��0 .as

Theorem 2.12: Let E  be a Banach space and Ω be a closed bounded, convex subset of E. Let F :� ��  
be a continuous operator then there exist y0 �� such that for all � � (0,1) and Y ��,
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 1. � � � ��( (1 ){ }) ( )0FY y FY� � 
 2. ( )I F� � is closed where I :� ��  is identity map,
 3. κ κ( ) ( ),FY Y

Then, F  has a fixed point.

Proof. Let { }λn  be a sequence in (0,1)  such that limn n��� =1 and Fn be the sequence of mappings 
defined by Fn :� ��  by

F y Fy y y nn n n= (1 ) , = 0,1,2,..0� �� � �for all �

Now, since Ω is convex therefore Fn is well-defined. Assume for all y��  and n = 0,1,2...

� � � �

� �

� �

( ) = ( (1 ){ })
( )
( ).

0F Y FY y
FY
Y

n n n

n

n

� �




Now, define another sequence G E En : →  by

G v v v E nn n= , , = 0,1,2,..� �

clearly G Ln ∈ ( )  for n = 0,1,2,...  and is A -set contraction, Hence by Theorem 2.7 the mapping Fn has 
a fixed point yn ��  for n = 0,1,2,...  i.e

F y Fy y
y

n n n n n

n

= (1 )
= .

0� �� �

Therefore,

( ) =
= ( 1) (1 ) .0

I F y F y Fy
Fy y

n n n n

n n n

� �

� � �� �

Consequently, as { }Fyn  is a bounded sequence, we get that {( ) }I F yn−  is a central sequence . Now, 
given that ( )I F� � is closed therefore 0 ( ) .� �I F �  Hence there exist y��  such that ( ) = 0I F y−  and 
then the theorem has been proved.

3. Application

In this section, as an application of C*-algebra valued measure of non-compactness, we will prove the 
existence of solutions of a certain type of integral equation. Define:
 (i) � :    � �� � �  and g :  � �� , and
 (ii) � �, : . � ��  Where η  and g  are continuous. Let the following integral equation:

� � � �
�

( ) ( ) ( ( ( )))
( )

s g s s t s dt
s

= , ,
0

� �
for s  belongs to positive real numbers. Now, define H BC:= , ,( ) +  the normed linear space of all 
bounded real valued functions with supremum norm defined on +  with supremum norm. The space 
H , �� �

 is a regular ordered Banach space, for details see [19].
We define a C*-valued measure of non-compactness as follows. Let L H( )  be the space of all 

bounded linear operators on H.  Clearly L H( )  is a unital C*-algebra with identity I  and usual opera-
tor norm [15]. Let N H∈  be a bounded convex set, define

N s s s N( ) { ( ) }= : > 0,� � �



Shaheen F, et al., Results in Nonlinear Anal. 6 (2023), 30–39. 36

and

� �( ) limsup ( ( ))N N s
s

= ,
��

where � � � � �( ( )) sup ( ) ( )N s s s N= : , ,� �� �  define

κ κE N N I( ) ( )=

for I L H∈ ( ). Then clearly κE  is a C*-algebra valued measure of non-compactness. Let us consider the 
following;
  ( )A1  g,β  are continuous.

 ( )A2  There exists functions x y, :  � ��  such that η  is continuous with

� �( ) ( ) ( )s t x s y t t s, , , , ,� � �for all 

and lim ( ) ( )
( )

s

s
x s y t dt

�� �0 <1.
�

 Now we will consider the following theorem:

Theorem 3.1: Assume that ( )A1  and ( )A2  are true. Then the following integral equation

� � � �
�

( ) ( ) ( ( ( )))
( )

s g s s t s dt
s

= , ,
0

� �
has at least one solution v* in H.

Proof. We define

�� � � �
�

= , ,
0

( )
( ( ( ))) ( )

s
s t s dt g s� �

then using ( )A2 , Γ is bounded. Since η  is continuous so Γ is also continuous. Now, to prove that Γ is 
A −set contraction, let for � �, �N , a bounded and convex set in H , consider

� �� � � � � � � �
� �

( ) ( ) ( ( ( ))) ( ( ( )))
( ) ( )

s s s t s dt s t s dt
s s

� �

�

� �= , , , ,
0 0

xx s y t t t dt

N s

s
( ) ( ) ( ) ( )

( ( ))

( )

0

,

�
� �

�
� �

� �

where � = <1
0

sup lim ( ) ( )
( )

v

s
x s y t dt

�� �� ��
, using ( )A2 , now we get

� �( ( ( ))) ( ( )� N s N s� � ,

for all s� � . Let limsup  over s ��, we have

� �( ( )) ( )� N I N I �( ) ,

or

� �( ( )) ( )� N I I N I I � �
1
2

1
2

�

�
��

�

�
��

�

�
��

�

�
��

�

and finally

� �E EN I N I( ( )) ( )�  � �
1
2

1
2 .

�

�
��

�

�
��

�

�
��

�

�
��

�
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Clearly �
1
2 <1.I  Hence, properties of Theorem 2.7, are checked to obtain the fixed point of Γ.

Theorem 3.2: Suppose L( )  be the space of all bounded linear operators on Hilbert space . Let 
A A A Ln1 2, ,...., ( )∈   with 

i nA=1
2|| || 1.�� �  For ��L( )  and Q L� �( ) .  Then

� ��
�

�
n

n nA A Q
=1

* =

has at least one solution in L( ).

Proof. Let l A
i n= || ||
=1

2��  for any l > 0. Now let I  be the identity operator with usual norm in L( ).  
For a bounded convex subset N  in L( )  define:

N s s s N s( ) { ( ) }= : > 0, ,� � � � �for all 

and

� �( ) limsup ( ( ))N N s
s

= ,
��

where � � � � �( ( )) sup ( ) ( )N s s s N= : , ,� �� �  define

κ κE N N I( ) ( )=

for I L∈ ( ) . Then clearly κE  is a C*-valued measure of non-compactness.
Consider a map F L L: ( ) ( ) →  defined by

F A A Q
i

n n( ) =
=1

*� �
�

� �

then

F F A A A A

A A

A

i
n n

i
n n

i
n n

i
n

( ) ( ) =

= ( )

=1

*

=1

*

=1

*

=1

2

� �

�

� �

�

�

� �

�

�

� �

�

�

� �

�

��

�

�

� �

�

�

�

�

l
l N s( )( )

where l A
i n= <1.
=1

2��  Now using ( )A2  we get,

� �F N s l N s s( ) ( ), .( ) ( )� � �for all 

Now taking limsup  over s ��, we get

κ κ( ( )) ( )F N I l N I ,

or
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� �( ( )) ( )F N I l I N I l I
1
2

1
2

�

�
��

�

�
��

�

�
��

�

�
��

�

Hence

� �E EF N l I N l I( ( )) ( )
1
2

1
2 .

�

�
��

�

�
��

�

�
��

�

�
��

�

Clearly l I
1
2 <1, and the conditions of Theorem 2.7, has been checked. Hence F  has a fixed point.
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