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Abstract
This study presents a process of three important steps leading to the validation of a probability distri-
bution model. It discusses how a family of probability distribution models can be selected to stand as 
candidate models to fit a given set of quantitative data, and then it discusses the methods of classify-
ing these candidate models. The last part presents hypothesis testing as the final step in the process 
of probability model validation.
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1. Introduction

While mathematics provides a variety of mathematical methods for modelling quantitative data, 
one aspect that can never be avoided is the process of validating the best fitting model from among 
the candidate models [1]. In essence, the process of validating is simply a process of finding out 
if the best-fitting model is valid for use. Xiaomo and Sankaran [2] defined model validation as a 
 decision-making process that involves deciding which model is valid to use by comparing the original 
data set (observed data) and the data set that gets produced by a fitted model (expected data) while 
taking into account the uncertainty that exists during the whole process.
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Several mathematical models exist. However, they can all be classified into two groups: deter-
ministic models and stochastic (probabilistic) models. Stochastic modelling takes into consideration 
the random nature of data being modelled and seeks to measure this randomness [3]. The measure 
or quantification of the randomness (uncertainty) of data during modelling is also called probability 
[4, 5]. So, we can say that probability distribution models are part of the class of stochastic models.

One of the most interesting models is a group of probability distribution models, as well as the way 
to fit them to data [6], how to classify them [7], and the way to test which model fits the data the best 
[1, 8].

This paper brings, into the field of modeling, an organized and documented step by step procedure 
of probabilistic modeling from the first stage where we ask “which probability fits which data?” to the 
last stage of proving the validity of best selected and fitted probability distribution models to data.

Without leaving out the taking note of the three steps as being the candidate models’ selection, the 
candidate models’ classification, and then the validating hypothesis testing, this paper is structured 
as follows: First, in Section 2, it presents the discussion of how to select candidate probability models 
for the given data. Secondly, in section 3, the paper discusses the methods of how to classify these 
candidate probability models, and finally, in section 4, the paper discusses the process of proving the 
validity of the best fitting model(s) through hypothesis testing.

2. Candidate Model Selection

2.1. Selecting Probability Distributions’ Families Using Histograms

The process of model validation is just an aftermath of the fitting of the available data to the proba-
bility distributions, which is a very important process of modelling. Fitting the data to the probability 
distributions would go well by first identifying the probability or the probability family to which the 
data’s real distribution is very closely related [1, 8, 9, 19]. This is so because the data’s real distribu-
tion is, in most cases, very difficult, if not impossible, to find, and so we attempt to associate the real 
distribution with its closely related distribution among those available. This is the essence of mod-
elling. Research on discovering and constructing probability distributions that may be very closely 
related to most available data is in development. For example, insurance data’s histograms show that 
it is always right-skewed and thick-tailed [1], hence the research that has developed closely related 
diverse corresponding distributions. Identifying a probability distribution family to which the real 
distribution of the data belongs can be done by computationally creating the data’s histogram and 
observing to see which of the available distributions’ density graphs the data’s histogram resembles. 
This requires knowing various varieties of distributions and their density graphs. Figures 2.1.1–2.1.4 
are examples of histograms [10, 12].

The first histogram is right-skewed (positively skewed); this takes the shape of density functions of 
probability distributions such as Pareto, Gamma, Lognormal, Inverse Gaussian, and Weibull [1, 19]. 
Among others, insurance claims data histograms take the shape of the first histogram. The second 
histogram is left skewed, the shape of which takes after the density functions of the distributions of 
returns on investments, daily stock market returns, age of deaths, etc. The second histogram is some-
how symmetric and data which produces this shape is usually modelled by a distribution such as a 

Figure 2.1.1 Figure 2.1.2 Figure 2.1.3 Figure 2.1.4
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normal distribution, although depending on the shape of being symmetric, distributions such as uni-
form, Cauchy, logistic, etc. can also be considered to model data with symmetric histograms [13]. The 
fourth figure indicates a mixture of distributions that are somehow symmetric, although histograms 
of mixed distributions are not always of symmetrically shaped distributions. A mixed distribution can 
be right-skewed, symmetric, or any other possible mixture [9].

As is the case in modelling, no probability model is “a best fit it all” model, hence the reason for 
modelling. But the histograms of insurance data always show that it fits best with right-skewed 
distributions.

Based on what’s been said, it seems like it would be best to make a histogram of the data first so 
that it can be linked to a closely related probability distribution model in terms of histograms before 
fitting the model to the given data.

2.2. Selection by the Q-Q plots/P-P plots

The Q-Q plots and P-P plots simply connote Quantile-Quantile plots and Probability-Probability plots, 
respectively [9]. The term “Q-Q plot” simply refers to plotting the quantiles of a given set of data 
(observed data) and data estimated from the fitted probability distribution model (expected data). In 
the same vein, the P-P plot denotes the comparison of the observed and expected data’s probabilities 
on a plot by plotting the probabilities of the respective sets of data [9]. Check out the figure below, 
which shows the three P-P plots of Algeria’s GAM General insurance company’s 2015 (plots 1 and 2) 
and 2016 (plot 3) claims data fitted to Lognormal-Pareto, Lognormal-Logistic, and Lognormal-Burr 
composite distribution models [8].

It should be noted that with P-P plots, the more the thick red line aligns with the thin dark line, the 
better the data set fits the probability distribution. Where the thick red line perfectly fits the thin dark 
line, it implies the data set (observed data) perfectly fits the probability distribution or it is simply of 
the same probability distribution. The first P-P plot indicates the data set that clearly doesn’t come 
from the Lognormal-Pareto probability distribution model, and the third P-P plot indicates that the 
Lognormal-Burr probability distribution can be considered as one of the candidate models for fitting 
the data set as the red line almost perfectly fits the dark, thin, straight line.

The Q-Q Plots are applied the same way the P-P Plots have been applied above.

3. Classification of Candidate Probability Models

This is the immediate process that comes after fitting the data to the candidate models. Fitting the 
data to the candidate models involves estimating the models’ parameters by the maximum likelihood 
estimation method [2, 6]. 

Figure 2.2.1: P-P Plots of Lognormal-Pareto, Lognormal-Loglogistic and Lognormal-Burr.
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3.1. Classification by NLL, AIC and SBC

The Negative Log-likelihood (NLL): The NLL is simply the negative of the maximized log- 
likelihood. The estimation of parameters by maximum likelihood estimation methods produces a max-
imized log-likelihood value along with estimated parameters [6]. The maximized log-likelihood value 
is by itself meaningless, but it is derived (determined or calculated) from the maximum likelihood, 
which is simply a measure that is given for estimated parameters, at their maximum probability, of 
having to have their model produce the observed data [7]. Where two or more models are being fitted 
to data, the negative log-likelihood can be a very helpful value to select a best-fitting model, except 
that the models have to be of the same number of parameters [7]. The model with the biggest negative 
log-likelihood value can be picked as the best fitting model.

The Akaike Information Criterion (AIC): The AIC comes in to cover the limitation of the NLL 
where it only works for models with the same number of parameters. The AIC has the benefit of 
being able to compare fitted models with different numbers of parameters [7]. By having NLL L� � ( )�� � ,  
where θ  is a set of a model’s parameters, the AIC is given by

AIC k L� �2 2 ( )�

Where k represents the number of parameters in the set θ . This simply means that, by subtracting 
2k from 2 � ( )L θ , AIC penalises a model for having more parameters [7].

The Schwarz’s Bayesian Criterion (SBC): Also known as the Bayesian Information Criterion 
(BIC), it is also a remedy for NLL’s incapability of comparing models with varying numbers of param-
eters [7]. It is given by

SBC kln n L� �( ) ( )2 �

Here, as in AIC, k is the number of the model’s parameters and is the size of the data being mod-
elled. From SBC, it can be stated that the bigger the data size and the greater the number of param-
eters being estimated, the more the model gets penalized.

As with NLL, models with the smallest values for AIC and SBC are the ones that fit the data 
best [1]. 

3.2. Classification by KS, AD and CvM Test Statistics

Unlike the NLL, AIC, and SBC, which look at the maximum likelihood of the fitted model to pro-
duce the observed data, the KS, AD, and CvM aim at giving the value of the ‘distance’ between the 
fitted model’s cumulative distribution function (CDF) and the observed data’s empirical distribution 
function (EDF) [1]. The best-fitting model is the one that has the smallest difference between its 
CDF and its EDF [10]. From Calderin-Ojeda and Kwok work [1], for F̂  being the fitted model’s CDF, 
x x xN1 2, , ,…  being the observed data and x x x N( ) ( ) ( ), , ,1 2 …  being the observed data in increasing order, 
we have
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4. Proving the Validity of Best Fitting Model by Hypothesis Testing

A best-fitting probability model can be incorporated into diverse relevant formulae and be used to 
calculate various statistical measures such as a business’s maximum expected loss, insurance premi-
ums, reinsurance premiums, etc. However, before a model can be used, it has to be tested to see if it 
qualifies. A way to do this is by hypothesis testing [2].

Hypothesis testing involves statistically finding out whether we approve a defined null hypothesis 
( )H0  and, by default, disapprove the alternative hypothesis ( )Ha  or vice versa [15, 11]. This can be 
given by;

H0: The best fitting model is valid to be used 
vs
Ha: The best fitting model is not valid to be used 

4.1. Approving/Disapproving H0 by Comparing a Test Statistic and a Critical Value

For a given level of significance ( )α , we can determine its corresponding critical value by some meth-
ods, such as the most basic one, which is the use of the probability distribution model’s table of values 
[15].

Statistical Hypothesis: For a better understanding, we give an example of a hypothesis test depen-
dent on a parameter γ 0 . In this case, the H0  and Ha  for each test can, as a couple, be defined in one 
of the following three ways [9], depending on the suitable prevailing situation:
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In the first case, the test is called a left-tailed test; in the second case, the test is called a two-tailed 
test; and in the third case, the test is called a right-tailed test. The first and the third tests can be 
classified under one name: one-tailed tests [15, 17].

Graphically, using the probability model’s density, a critical value is a value dividing the density 
figure into a rejection and a non-rejection region. And therefore, in the left-tailed test’s null hypothe-
sis, � �� 0 means that we do not reject (we approve) the null hypothesis if the test statistic is greater 
than or equal to the critical value, otherwise we reject (we disapprove). In the right-tailed test, � �� 0 
means that we approve the null hypothesis if the test statistic is less than or equal to the critical 
value. And in the two-tailed test, we accept the null hypothesis if the test statistic is between the neg-
ative and positive values of the critical value found at half the level of significance ( )α . Otherwise, we 
reject the null hypothesis and accept the alternative hypothesis [17]. 

4.2. Approving/Disapproving H0 by Comparing a Level of Significance and a p-value

Here, the approving and disapproving are facilitated by two highly interrelated statistical measures, 
namely the level of significance, also known as alpha ( )α , and the p-value. The level of significance 
( )α  is simply the probability of disapproving the true null hypothesis, and the p-value is the smallest 
value of the level of significance at which we disapprove the null hypothesis [17]. This can be summa-
rized by the following mathematical statement.

If p-value ≥ alpha (α) then approve the H0 otherwise disapprove H0
The p-value can also be defined as a direct measure of the likelihood of the given set of data being 

in the candidate probability model [17]. This being the case, sometimes it is not necessary to deter-
mine the level of significance and compare it with the p-value. Instead, we take the p-value as the 
probability of having our given set of data come from the candidate probability model. In this way, we 
take it that the closer the probability is to one (1), the more likely it is that the data is of the candidate 
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probability model and vice-versa. In most strict cases, how close to one (1) a probability is can be 
judged by its being able to be rounded off to one (1).

4.3. Determining the Level of Significance and the p-value

The level of significance can be determined by choice, depending on which would best fit the kind of 
test being carried out; it can be 0.01, 0.1, or the standard one, 0.05 [18]. However, the p-value can, 
among other methods, be determined by the bootstrap method using the following steps [8, 1]
• For the best fitting model, calculate the test statistics such as t tKS CvM,�  and tAD  as given in section 

3.2.Using the model providing the best fit to  x x xN1 2, , ,…  as data, 
- generate M sets of resampled data and denote them as …( ) ( ) ( )

1 2ˆ ˆ,  ,ˆ   ,i i i
Nx x x  for i M� �1, , .

- refit it to each set of the resampled data and then compute the test statistics t tKS
i

CvM
i( ) ( ),�  and tAD

i( )  
for i M� �1, , .

• Then, finally, determine the p-values by 
# :� ����
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KS�� �
, 
# :� ����
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5. Conclusion

In the event that no probability distribution model fits the data, probability as a field provides the pos-
sibility that one can be created to fit the data, although this would take more work than just selecting 
it from the available ones [14, 16]. In section 2, although histograms and Q-Q/P-P plots can be used 
separately to select candidate probability distributions, Q-Q/P-P plots can also be used to confirm can-
didate models selected by histograms. To put it more sequentially, candidate models may be selected 
using histograms, histograms may be confirmed using Q-Q/P-P Plots, and thereafter, fitted models 
can be confirmed by Q-Q/P-P Plots and can be ordered/classified from the best-fitting to the worst-fit-
ting ones by using NLL, AIC, SBC, KS, AD, and CvM [8]. The hypothesis testing method, which is 
proposed in this paper as the final stage in the probability model validation process, can then be used 
to test the best-fitting model(s) to see if they are valid.
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