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1. Introduction

Matsumoto [1] first proposed the idea of a Lorentzian para-Sasakian (briefly, LP-Sasakain) manifold 
in 1989. The same idea was then independently suggested by Mihai and Rosca [2], who produced a 
number of findings in this manifold. De et. al. [3–5], Khan [6], Matsumoto and Mihai [7], Sato [8] and 
Tarafdar and Bhattacharya [9] have also explored LP-Sasakian manifolds. The Weyl conformal cur-
vature tensor   and the concircular curvature tensor   on a Riemannian manifold M  of dimension 
n  have been studied by Adati and Matsumoto [10], Chaki and Gupta [11] and Yano and Sawaki [12].

Let u u1 2,  and u3  be vector fields on M  with a metric g . The Weyl conformal curvature tensor   
is given by
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where S g Q( , ) = ( , )u u u u1 2 1 2  and S Q R r, , ,  on M  denote the Ricci tensor, the Ricci operator, the cur-
vature tensor and the scalar curvature, respectively.

The quasi conformal curvature tensor   is given by
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where a b,  are constants and ab ≠ 0  and S g Q( , ) = ( , ).u u u u1 2 1 2

On the other hand, one of the primary contributions of differential geometry of tangent bundles is 
to allows an effective differential geometry domain. Yano and ishihara [13] introduced notion of lift-
ings of tensor fields and connections to tangent bundles and established some properties of curvature 
tensors. Dida and Hathout ([14–16]) determined Ricci soliton structures with lift torqued potential 
fields on tangent bundles of Riemannian manifolds. Numerous investigators [17–23] have studied 
several connections and geometric structures on the tangent bundle and providing their ideas.

The proposed paper’s objective is to investigate the liftings from Lorentzian para-Sasakian mani-
folds to its tangent bundle. The followings are a compilation of the paper’s main findings:
• Lifts of LP-Sasakian manifolds with the Weyl conformal curvature tensor

 = 0 (1.3)

are the subject of our investigation.
• A conformally flat LP-Sasakian manifold on TM  is locally isometric to a unit sphere Sn(1)  has 

shown.
• Lifts of LP-Sasakian manifolds with the quasi conformal curvature tensor

 = 0 (1.4)

are the subject of our investigation.
• A quasi conformally flat LP-Sasakian manifold on TM  is locally isometric to a unit sphere Sn(1)  

has shown.

Notations: Throughout the article following notations are used: ℑr
s M( )  and ℑr

s TM( )  denote the set 
of all tensor fields of type ( , )r s , that is of contravariant degree r  and covariant degree s , in M  and 
TM , respectively.

2. Preliminaries

A differentiable manifold M  (dim = n ) is called an LP-Sasakian ([1], [2]) if it allows a (1, 1)-tensor 
field φ , a vector field ξ , a 1-form η  and a Lorentzian metric g  which suffice

� �( ) = 1,� (2.1)

� � �2 = ,I � � (2.2)
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where ∇  indicates the operator of covariant differentiation with respect to the Lorentzian metric g .
The relationships listed below hold in an LP-Sasakian manifold:
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where S  is Ricci tensor and a b,  are functions on M .
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where R  is the Riemannian curvature tensor.

3. Lifts of LP-Sasakian manifolds

Let TM  be the tangent bundle of a manifold M  and let the function, a 1-form, a vector field and a 
tensor field type (1,1) be symbolized as f , ,η u1  and φ  and ∇ , respectively. Suppose TM  be the tan-

gent bundle and u u1 1= i
ix

∂
∂

 be a local vector field on M , then its vertical and complete lifts in the 

term of partial differential equations are

u u1 1
V i
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The complete and vertical lifts of f , ,η u1  and φ  are symbolized as f C C C C, , ,� �u1  and f V V V V, , ,� �u1 , 
respectively. The following functions on f , ,η u1  and φ  are provided by ([23–25])
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where u u1 2
C C TM, ( )0

1��  and mathematical operators ∇C  and ∇V  are the complete and vertical lifts 
of ∇  on TM  ([26], [27]).

Taking the complete lift by mathematical operators on (2.1)-(2.8), we infer
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In addition,
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and Q , respectively.

4. Lifts of LP-Sasakian manifolds with  = 0

Let TM  be the tangent bundle of an LP-Sasakian manifold M . Taking the complete lift by mathe-
matical operators on (1.1), we infer
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where

S g QC C C C C C( , ) = (( ) , ).u u u u1 2 1 2

Using (1.3) in (4.1), we infer
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Taking u3 = ξ  in (4.1) and using (3.12), (3.19) and (3.20), we find
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Taking u2 = ξ  and using (3.9) we wet
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Hence the manifold is ηC -Einstein on TM . Contracting (4.4) we infer

r n nC = ( 1).− (4.5)

Using (4.5) in (4.4) we find

( ) = ( 1) .Q nCu u1 1− (4.6)

Putting (4.6) in (4.2) we get after a few steps
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This implies that a conformally flat LP-Sasakian manifold on TM  is of constant curvature (value=1). 
Thus we conclude that
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Theorem 4.1: Let TM  be the tangent bundle of an LP-Sasakain manifold. Then a conformally flat 
LP-Sasakian manifold on TM  is locally isometric to a unit sphere Sn(1) .

5. Lifts of a Lorentzian para-Sasakian manifolds with  = 0

Let TM  be the tangent bundle of an LP-Sasakian manifold M . Applying the complete lift on (1.2), 
we infer
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Applying (1.4) in above equation, we infer
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Taking u3 = ξ  in (5.2) and using (3.12), (3.19) and (3.20), we find
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Setting u2 = ξ  and using (3.9) we infer
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Contracting (5.4), we infer

r n nC = ( 1).− (5.5)

Making use of (5.5) in (5.4), we infer
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On applying (5.6) in (5.2), equation (5.2) becomes
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Thus we conclude that

Theorem 5.1: Let TM  be the tangent bundle of an LP-Sasakain manifold. Then a quasi conformally 
flat LP-Sasakian manifold on TM  is locally isometric with a unit sphere Sn(1) .
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