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Abstract

In this paper, we propose an inertial double proximal forward-backward method (IDFB) for convex minimization
problem in real Hilbert spaces. We suggest a new linesearch that does not require the condition of Lipschitz con-
stant and improve conditions of inertial term to speed up performance of convergence. Moreover, we prove the
weak convergence of the proposed method under some suitable conditions. The numerical implementations in data
classification from cervical cancer behaviour risk data set are reported to show its efficiency.
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1. Introduction

Convex minimization theory is critical in the fields of pure and applied mathematics as well as in many other
branches of science; see [14, 15, 20, 27]. The convex minimization problem is formulated as follows:

min
a∈H

(p(a) + q(a)), (1.1)

where H is a real Hilbert space, q : H → (−∞,+∞] is proper, lower semicontinuous and convex and p : H → R is
convex and differentiable with the Lipschitz continuous gradient. If a∗ is a minimizer of (1.1), then it is the solution
of (1.1), i.e.,

0 ∈ (∇p + ∂q)(a∗),
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where ∇p is the gradient of p and ∂q is the subdifferential of q. It is well-known that the minimization problem is
related to image processing [1, 6, 7], signal processing [11, 21, 28], machine learning and others, see [8, 9, 29, 30].

Nowadays, methods have been proposed for solving convex minimization problem, see [4, 12, 17, 22, 25]. The
method classically used in the field for solving this problem is the forward-backward method (FB) which is defined
by:

an = proxλnq(an − λ∇p(an)), n ≥ 1,

where the stepsize λ ∈ (0, 2/L), L is the Lipschitz constant of ∇p and proxq is the proximal operator of q. Sub-
sequently, the forward-backward method (FB) was modified as well as improved the stepsize to avoid the Lipschitz
constant such as linesearch rules and self-adaptive techniques [10, 13, 16, 21, 28, 29, 30]. In addition, the acceleration
of FB was studied by adding inertial terms which have the convergence speed at order of time complexity O(1/n2)
with respect to the size of the input as follows:

Method 1.1. A fast iterative shrinkage-thresholding algorithm (FISTA)
Let s0 = 1 and a0 = a1 ∈ H . Compute

cn = an + θn(an − an−1)

an+1 = prox 1
L

q(cn −
1
L
∇p(cn)), n ≥ 1,

where θn =
sn−1−1

sn
, sn+1 =

1+
√

1+4s2
n−1

2 and L is the Lipschitz constant of ∇p. This method was proposed by Beck
and Teboulle [3]. In 2016, Cruz and Nghia [4] proposed the method that does not require the condition of Lipschitz
constant as follows:

Method 1.2. A fast multistep forward-backward method with linesearch (FMFB)
Let a0, a1 ∈ H , s0 = 1, γ > 0, ℓ ∈ (0, 1), δ ∈ (0, 1

2 ) and define

cn = an + θn(an − an−1)

an+1 = proxλnq(cn − λn∇p(cn)), n ≥ 1,

where θn =
sn−1−1

sn
, sn+1 =

1+
√

1+4s2
n−1

2 and λn = γℓ
mn is the smallest nonnegative integer such that

λn∥∇p(proxλnq(cn − λn∇p(cn))) − ∇p(cn)∥ ≤ δ∥proxλnq(cn − λn p(cn)) − cn∥.

Many effective methods have been proposed to solve the minimization problem. For instance, Kankam et al. [19]
proposed two proximal gradient method using linesearch and proved that a convergence rate better than the others.
Motivated by this idea, we propose a new forward-backward method with a new linesearch for solving the convex
minimization problem. Moreover, we introduce weak convergence theorem under some mild assumptions. Finally,
we apply our methods to data classification problem from cervical cancer behaviour risk data set [23].

2. Preliminaries

Let q : H → (−∞,+∞] be a proper, lower semicontinuous and convex function. We denote the domain of q by
domq = {a ∈ H|q(a) < +∞}. For any a ∈ domq, the subdifferential of q at a is defined by

∂q(a) = {v ∈ H|⟨v, c − a⟩ ≤ q(c) − q(a), c ∈ H}.

• The proximal operator proxq : dom(q)→ H is defined by proxq(a) = (I + ∂q)−1(b), b ∈ H .
• The proximal operator is single-valued and we have

b − proxλq(b)

λ
∈ ∂q(proxλq(b)) for all b ∈ H , λ > 0. (2.1)

• A differentiable function p is convex if and only if there holds the inequality

p(d) ≥ p(a) + ⟨∇p(a), d − a⟩, ∀d ∈ H . (2.2)
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Definition 2.1. Let Ω be a nonempty subset ofH . A sequence {an} in H is said to be quasi-Fejér convergent to Ω if

and only if for all a ∈ Ω there exists a positive sequence {α} such that
∞∑

n=0

αn < +∞ and ∥an+1 − a∥2 ≤ ∥an − a∥2 + αn

for all n ≥ 1. When {αn} is a null sequence, we say that {an} is Fejér convergent to Ω.

Lemma 2.1. [5] The graph of ∂q, Graph(∂q) = {(a, v) ∈ H × H : v ∈ ∂q(a)} is demiclosed, i.e., if the se-
quence {(an, vn)} ⊂ Graph(∂q) satisfies that {an} converges weakly to a and {vn} converges strongly to v, then (a, v) ∈
Graph(∂q).

Lemma 2.2. [24] Let {an}, {cn} and {dn} be real positive sequences such that

an+1 ≤ (1 + dn)an + cn, n ≥ 1.

If Σ∞n=1dn < +∞ and Σ∞n=1cn < +∞, then lim
n→+∞

an exists.

Lemma 2.3. [16] Let {an} and {θn} be real positive sequences such that

an+1 ≤ (1 + θn)an + θnan−1, n ≥ 1.

Then, an+1 ≤ K ·
∏n

i=1(1 + 2θi) where K = max{a1, a2}. Moreover, if
∑∞

n=1 θn < +∞, then {an} is bounded.

Lemma 2.4. [2, 18] If {an} is quasi-Fejér convergent to Ω, then we have:
(i) {an} is bounded.
(ii) If all weak accumulation points of {an} is in S , then {an} weakly converges to a point in Ω.

3. Main results

3.1. An inertial double proximal forward-backward method (IDFB)

In this section, we introduce an inertial double forward-backward method for solving (1.1) with new stepsize as
follows:

Method 3.1. An inertial double proximal forward-backward method (IDFB)
Initialization: Let a0 = a1 ∈ H , θ1 > 0, γ > 0, ℓ ∈ (0, 1) and 0 < µ < 1.
Iterative step: For n ≥ 1, calculate an+1 as follows:
Step 1. Compute the inertial step:

bn = an + θn(an − an−1). (3.1)

Step 2. Compute the forward-backward step:

cn = proxλnq(bn − λn∇p(bn)).

Step 3. Compute the an+1 step:

an+1 = proxλnq(cn − λn∇p(cn))

where the linesearch λn = γℓ
mn is the smallest nonegative integer such that

λn(⟨∇p(an+1) − ∇p(cn), an+1 − cn⟩ + ⟨∇p(cn) − ∇p(bn), cn − bn⟩)

≤
µ2 + 1

4
∥an+1 − cn∥

2 +
µ

µ + 1
∥cn − bn∥

2. (3.2)

We instance n = n + 1 and go to Step 1.
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3.2. Convergence theorems

From Method 3.1, we assume that the following conditions are satisfied for our convergence analysis:
(A1) Define Ω = argmin(p + q) , ∅ is the solution set (1.1).
(A2) p, q : H → (−∞,+∞] are convex functions, two proper and lower semicontinuous.
(A3) The gradient ∇p is uniformly continuous on bounded subset ofH .

Lemma 3.1. Let a ∈ H , γ > 0, ℓ ∈ (0, 1) and 0 < µ < 1. For i = 1, 2, 3, ..., set

U(a, i) = proxγℓiq(a − γℓi∇p(a))

W(a, i) = proxγℓiq(U(a, i) − γℓi∇p(W(a, i))).

If

γℓi(⟨∇p(W(a, i)) − ∇p(U(a, i)),W(a, i) − U(a, i)⟩ + ⟨∇p(U(a, i)) − ∇p(a),U(a, i) − a⟩)

≤
µ2 + 1

4
∥W(a, i) − U(a, i)∥2 +

µ

µ + 1
∥U(a, i) − a∥2,

then λ = γℓi.
Else i = i + 1. The linesearch (3.2) stops after finitely many steps.

Proof. If a ∈ Ω, then a = proxγq(a− γ∇p(a)) = U(a, 0). It follows that U(a, 0) = a and the linesearch stops with zero
step, hence λ = γ.

If a < Ω, then

γℓi(⟨∇p(W(a, i)) − ∇p(U(a, i)),W(a, i) − U(a, i)⟩ + ⟨∇p(U(a, i)) − ∇p(a),U(a, i) − a⟩)

>
µ2 + 1

4
∥W(a, i) − U(a, i)∥2 +

µ

µ + 1
∥U(a, i) − a∥2,

it follows that

γℓi(∥∇p(W(a, i)) − ∇p(U(a, i))∥∥W(a, i) − U(a, i)∥

+∥∇p(U(a, i)) − ∇p(a)∥∥U(a, i) − a∥)

>
µ2 + 1

4
∥W(a, i) − U(a, i)∥2 +

µ

µ + 1
∥U(a, i) − a∥2. (3.3)

So we have as i → ∞, ∥W(a, i) − U(a, i)∥ → 0 and ∥U(a, i) − a∥ → 0. Since ∇p is uniformly continuous, we get
∥∇p(W(a, i)) − ∇p(U(a, i))∥ → 0 and ∥∇p(U(a, i)) − ∇p(a)∥ → 0 as i→ ∞. By equation (3.3), we have

∥U(a, i) − a∥
γℓi

→ 0 as i→ ∞.

We see that
a − γℓi∇p(a) − U(a, i)

γℓi
∈ ∂q(U(a, i)).

Hence,
a − U(a, i)
γℓi

∈ ∂q(U(a, i)) + ∇p(a).

By Lemma 2.1, we have 0 ∈ ∂q(a) + ∇p(a). Therefore, a ∈ Ω which is a contradiction. □

Next, we have the following theorem.

Theorem 3.1. Let {an} be generated by Method 3.1. If
∑∞

n=1 θn < ∞ and λn ≥ λ for some λ > 0, then {an} weakly
converges to point in Ω.
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Proof. By equation (2.1), we obtain

bn − cn

λn
− ∇p(bn) =

bn − proxλng(bn − λn∇p(bn))
λn

− ∇p(bn) ∈ ∂q(cn).

By equation (2.2), we get

q(a) − q(cn) ≥ ⟨
bn − cn

λn
− ∇p(bn), a − cn⟩, ∀a ∈ H . (3.4)

Also, we have

cn − an+1

λn
− ∇p(cn) =

cn − proxλnq(cn − λn∇p(cn))
λn

− ∇p(cn) ∈ ∂q(an+1),

from equation (2.2) again, we obtain

q(a) − q(an+1) ≥ ⟨
cn − an+1

λn
− ∇p(cn), a − an+1⟩, ∀a ∈ H . (3.5)

For any a ∈ H , we have

p(a) − p(bn) ≥ ⟨∇p(bn), a − bn⟩ (3.6)

and

p(a) − p(cn) ≥ ⟨∇p(cn), a − cn⟩. (3.7)

Using equation (2.2) and equation (3.2) and combining equations (3.4), (3.5), (3.6) and (3.7), we obtain

q(a) − q(an+1) + q(a) − q(cn) + p(a) − p(bn) + p(a) − p(cn)

≥ ⟨
cn − an+1

λn
− ∇p(cn), a − an+1⟩ + ⟨

bn − cn

λn
− ∇p(bn), a − cn⟩

+⟨∇p(bn), a − bn⟩ + ⟨∇p(cn), a − cn⟩

=
1
λn
⟨cn − an+1, a − an+1⟩ + ⟨∇p(cn), an+1 − a⟩ +

1
λn
⟨bn − cn, a − cn⟩ + ⟨∇p(bn), cn − a⟩

+⟨∇p(bn), a − bn⟩ + ⟨∇p(cn), a − cn⟩

=
1
λn
⟨cn − an+1, a − an+1⟩ +

1
λn
⟨bn − cn, a − cn⟩

+⟨∇p(cn) − ∇p(an+1) + ∇p(an+1), an+1 − cn⟩ + ⟨∇p(bn) − ∇p(cn) + ∇p(cn), cn − bn⟩

=
1
λn

[⟨cn − an+1, a − an+1⟩ + ⟨bn − cn, a − cn⟩]

−[⟨∇p(an+1) − ∇p(cn), an+1 − cn⟩ + ⟨∇p(cn) − ∇p(bn), cn − bn⟩]

+⟨∇p(an+1), an+1 − cn⟩ + ⟨∇p(cn), cn − bn⟩

≥
1
λn

[⟨cn − an+1, a − an+1⟩ + ⟨bn − cn, a − cn⟩] − [
µ2 + 1

4λn
∥an+1 − cn∥

2

+
µ

(µ + 1)λn
∥cn − bn∥

2] + p(an+1) − p(cn) + p(cn) − p(bn).

Hence, we obtain

2⟨cn − an+1, an+1 − a⟩ + 2⟨bn − cn, cn − a⟩

≥ 2λn[q(an+1) − q(a) + q(cn) − q(a) − p(a) + p(cn) − p(a) + p(an+1)]

−2λn[
µ2 + 1

4λn
∥an+1 − cn∥

2 +
µ

(µ + 1)λn
∥cn − bn∥

2]

= 2λn[(p + q)(an+1) − (p + q)(a) + (p + q)(cn) − (p + q)(a)]

−[
µ2 + 1

2
∥an+1 − cn∥

2 +
2µ
µ + 1

∥cn − bn∥
2]. (3.8)
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We have

2⟨cn − an+1, an+1 − a⟩ = ∥cn − a∥2 − ∥cn − an+1∥
2 − ∥an+1 − a∥2, (3.9)

and

2⟨bn − cn, cn − a⟩ = ∥bn − a∥2 − ∥bn − cn∥
2 − ∥cn − a∥2. (3.10)

By equations (3.8)-(3.10), we have

−∥cn − an+1∥
2 − ∥an+1 − a∥2 + ∥bn − a∥2 − ∥bn − cn∥

2

≥ 2λn[(p + q)(an+1) − (p + q)(a) + (p + q)(cn) − (p + q)(a)]

−[
µ2 + 1

2
∥an+1 − cn∥

2 +
2µ
µ + 1

∥cn − bn∥
2].

It follows that

∥an+1 − a∥2 ≤ ∥bn − a∥2 − ∥cn − an+1∥
2 − ∥bn − cn∥

2

−2λn[(p + q)(an+1) − (p + q)(a) + (p + q)(cn) − (p + q)(a)]

+
µ2 + 1

2
∥an+1 − cn∥

2 +
2µ
µ + 1

∥cn − bn∥
2

= ∥bn − a∥2 − (1 −
µ2 + 1

2
)∥cn − an+1∥

2 − (1 −
2µ
µ + 1

)∥bn − cn∥
2

−2λn[(p + q)(an+1) − (p + q)(a) + (p + q)(cn) − (p + q)(a)].

Setting a = a∗ ∈ Ω and using 0 < µ < 1, we derive

∥an+1 − a∗∥2 = ∥bn − a∗∥2 − (1 −
µ2 + 1

2
)∥cn − an+1∥

2 − (1 −
2µ
µ + 1

)∥bn − cn∥
2

−2λn[(p + q)(an+1) − (p + q)(a∗) + (p + q)(cn) − (p + q)(a∗)] (3.11)

≤ ∥bn − a∗∥2.

So,

∥an+1 − a∗∥ ≤ ∥bn − a∗∥

= ∥an + θn(an − an−1) − a∗∥

≤ ∥an − a∗∥ + θn(∥an − a∗∥ + ∥an−1 − a∗∥), (3.12)

which gives ∥an+1 − a∗∥ ≤ (1 + θn)∥an − a∗∥ + θn∥an−1 − a∗∥. By Lemma 2.3, we obtain

∥an+1 − a∗∥ ≤ K ·
n∏

i=1

(1 + 2θi),

where K = max{∥a1 − a∗∥, ∥a2 − a∗∥}. By Lemma 2.3 and
∑∞

n=1 θn < +∞, we obtain {an} is bounded. So
∞∑

n=1

θn∥an − an−1∥ < +∞. (3.13)

From Lemma 2.2 and equation (3.12), we obtain limn→∞ ∥an − a∗∥ exists.
Consider,

∥bn − a∗∥2 = ∥an + θn(an − an−1) − a∗∥2

≤ ∥an − a∗∥2 + 2θn∥an − a∗∥∥an − an−1∥ + θ
2
n∥an − an−1∥

2. (3.14)
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From equation (3.11) and equation (3.14), we get

∥an+1 − a∗∥2 ≤ ∥an − a∗∥2 + 2θn∥an − a∗∥∥an − an−1∥ + θ
2
n∥an − an−1∥

2

−(1 −
µ2 + 1

2
)∥cn − an+1∥

2 − (1 −
2µ
µ + 1

)∥bn − cn∥
2

−2λn[(p + q)(an+1) − (p + q)(a∗) + (p + q)(cn) − (p + q)(a∗)]

≤ ∥an − a∗∥2 + 2θn∥an − a∗∥∥an − an−1∥ + θ
2
n∥an − an−1∥

2

−(1 −
µ2 + 1

2
)∥cn − an+1∥

2 − (1 −
2µ
µ + 1

)∥bn − cn∥
2. (3.15)

From equation (3.13) and limn→∞ ∥an − a∗∥ exists, from equation (3.15), we have

lim
n→∞
∥cn − an+1∥ = 0 (3.16)

and

lim
n→∞
∥bn − cn∥ = 0. (3.17)

From equation (3.1), we have

lim
n→∞
∥an − bn∥ = 0. (3.18)

From equation (3.17) and equation (3.18), we consider

lim
n→∞
∥an − cn∥ ≤ lim

n→∞
∥an − bn∥ + lim

n→∞
∥bn − cn∥

= 0. (3.19)

From equation (3.16) and equation (3.19), we get

lim
n→∞
∥an+1 − an∥ ≤ lim

n→∞
∥an+1 − cn∥ + lim

n→∞
∥cn − an∥

= 0.

Since {an} is bounded, then there exists a subsequence {ank } of {an} such that ank ⇀ ā ∈ H . Moreover, we obtain
ank+1 ⇀ ā. Since {ank } is bounded, limk→∞ ∥ank+1 − cnk∥ = 0 and ∇p is uniformly continuous, we have

lim
k→∞
∥∇p(ank+1) − ∇p(cnk )∥ = 0. (3.20)

From

ank+1 = proxλnk q(cnk − λnk∇p(cnk )),

it follows that
cnk − λnk∇p(cnk ) − ank+1

λnk

∈ ∂q(ank+1).

Hence,
cnk − ank+1

λnk

+ ∇p(ank+1) − ∇p(cnk ) ∈ ∇p(ank+1) + ∂q(ank+1). (3.21)

Using equation (3.20), letting k → ∞ in equation (3.21) and applying Lemma 2.1, we get

0 ∈ (∇p + ∂q)(ā). (3.22)

Hence ā ∈ Ω. From equation (3.15) and Definition 2.1, we have {an} is a quasi- Fejér sequence. Hence, the sequence
{an} weakly converges to a point in Ω by Lemma 2.4. □
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4. Application to Data Classification

In this section, we discuss data classification problems based on a learning technique called extreme learning
machine (ELM). Let {(an, cn) : an ∈ R

N , cn ∈ R
M, n = 1, 2, 3, ...,K} be a training set of K distinct samples, an is an

input training data and cn is a training target. For the output of ELM with single hidden layer at the i-th hidden node
is

ηi(a) = p(ui, vi, a),

where p is an activation function, ui is the weight at the i-th hidden node and vi is the bias at the i-th hidden node. The
output function with L hidden nodes is the single-hidden layer feed forward neural networks (SLFNs)

On =

L∑
i=1

βiηi(an),

where βi is the optimal output weight at the i-th hidden node. The hidden layer output matrix H is defined by

H =


p(u1, v1, a1) · · · p(uL, vL, a1)

...
. . .

...

p(u1, v1, aK) · · · p(uL, vL, aK)


The principal objective of ELM is to calculate an optimal weight β = [β1, ..., βL]T such that Hβ = B, where B =
[t1, ..., tK]T is the training target data. We find the solution β via convex minimization problem. Next, we introduce the
least absolute shrinkage and selection operator (LASSO) [26] to find the parameter β. It can be modeled as follows:

min
β∈RL
{∥Hβ − B∥22 + τ∥β∥1}, (4.1)

where τ is a regularization parameter. We see that if p(β) = ∥Hβ − B∥22 and q(β) = τ∥β∥1, then the problem (4.1) is
reduced to the problem (1.1).

In experiments, we use a cervical cancer behaviour risk data set from UCI Machine Learning Repository [23] for
training processing. This data set contains 72 samples which has 19 attributes. We classify two classes of data. We
use the sigmoid as the activation function and the hidden nodes L = 300. For efficiency of algorithms, we measure by
the accuracy of the output data as follows:

accuracy =
correctly predicted data

all data
× 100.

For the loss of an example, it is computed by the binary cross entropy loss function:

Loss = −
1

output size

output size∑
i=1

bi log b̂i + (1 − bi) log(1 − b̂i),

where b̂i is the i-th scalar value in the model output, bi is the corresponding target value, and output size is the number
of scalar values in the model output. In Table 1, we fix parameters for each methods as follows:

Table 1: Chosen control parameters of each methods

Methods γ ℓ δ µ

FISTA L = 1/∥A∥
FMFB 2 0.5 0.1 -
IDFB 2 0.5 - 0.8

In our method (IDFB), we set s0 = 1, sn =
1+
√

1+4s2
n−1

2 and

θn =

sn−1 − 1 if n ≤ 1000,
0 otherwise.
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Table 2: The result of each methods with the stopping criteria

Methods Iter Training time Acc(%)
FISTA 49 0.0491 90.91
FMFB 32 0.9747 90.91
IDFB 25 0.8014 90.91

The regularization parameter is τ = 10−5. The stopping criteria is the binary cross entropy (Loss=0.119). We report
measured quantities in Table 2.

Next, we show graphs of the accuracy and loss of training data and testing data for overfitting of IDFB.

Figure 1: Plot accuracy of IDFB

Figure 2: Plot loss of IDFB
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5. Discussion

We see that in Table 2, IDFB has the number of iterations less than FISTA and FMFB at the testing accuracy
90.91. It shows that IDFB has a better efficiency than other methods. In Figure 1, we see that training accuracy and
validation accuracy have a high gap. It shows that a few training data set are not good enough to train model. Also,
Figure 2 has a gap between training loss and testing loss. However, graphs of accuracy and loss values tends in the
same way which show that our method (IDFB) can still classify data set even if there are a few data set.

6. Conclusions

In this work, we have proposed an inertial double proximal gradient method with a new linesearch for solving
convex minimization problem. We provided weak convergence theorem under some suitable conditions. It was shown
that our method has a better performance than FISTA and FMFB in data classification problem. In future work, we
study double proximal gradient method with a new linesearch in Banach spaces.
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