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Abstract

In this paper, we solve the non-linear Korteweg-de Vries equation by considering the time-fraction derivative
in Caputo sense and o�ered intrinsic properties of solitary waves. The fractional residual power series method
is used to obtain the approximate solution of the aforesaid equation and compared the obtained results with
Adomian Decomposition Method. Obtained results are e�cient, reliable, and simple to execute on most of
the non-linear fractional partial di�erential equations, which arise in various dynamical systems.
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1. Introduction

In 1877, Joseph Valentin Boussinesq[1] initiated theoretical investigations on solitary waves induced on
shallow water; later in 1895, Diederik Korteweg and Gustav de Vries (Dutch Mathematicians) has retrieved
the weakly non-linear partial di�erential equation (popularly known as KdV equation) and presented a
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mathematical model illustrating the wave of shallow water surfaces[2]. In a classical sense, the Korteweg-de
Vries (KdV) is a non-linear partial di�erential equation of order three, given as

ψτ + 6ψψξ + ψξξξ = 0 , (1)

where ψ(ξ, τ) denotes the elongation of the wave at place ξ and time τ .

The Korteweg-de Vries (KdV) is an equation, which is widely accepted and used in various branches of
physical sciences and engineering during the study of �uid dynamics as it describes weakly non-linear long
waves. The KdV equation gives information about small amplitudes of long waves on the free surface of the
water.

Historically the KdV equation was �rst developed in the study of shallow-water waves in canals[3]; since
then it has been discovered to be involved in a variety of physical processes, especially those exhibiting
shock waves, travelling waves, and solitons. The KdV model is used to explain many theoretical physical
phenomena in the solitons[4], aerodynamics[5], turbulence[6], �uid dynamics[7] etc. Thus the KdV equation
has been studied and applied for many decades.

The KdV equation exhibits several properties, including discovery due to Gardner[8], viz. asymptotic stabil-
ity in the energy space, total energy of the solution, etc. Gardener revealed the fact that �The KdV equation
can be solved exactly, as an initial value problem, starting with arbitrary initial data in a suitable space.�
Thus, the KdV equation is to be considered as a classical one with its theoretical signi�cance, demonstrating
that the PDEs governing physical phenomena may also be solved exactly. Thus, unlike the majority of the
PDEs which require a numerical approach, KdV can be solved analytically. As a noticeable characteristic
of the KdV equation, Xiang[3] discussed the existence and uniqueness of this celebrated equation in his work.

Here in the present work, we consider the KdV equation in the form of a fractional partial di�erential equa-
tion (FPDE) and use the Fractional Residual Power Series Method (FRPSM) to obtain the semi-analytic
solution. The signi�cance of studying this celebrated equation in the fractional form lies in the fact that
using the fractional approach we get more realistic results in real-time situations, as compared to conven-
tional derivatives of integer order. And, FRPSM intends to determine an exact and estimated solution in a
semi-analytical way for the fractional physical equations. FRPSM leads to a closed-form solution of several
well-known functions as it is working in a well-organized and competent way to solve ordinary and partial
di�erential equations. To solve non-linear time-dependent FPDEs, the FRPSM is one of the dominant tech-
niques, which is established by the generalized formula of the Taylor series. The di�erent types and orders
of non-linear FDEs can be solved by the FRPSM e�ectively. It constructs Residual power series expansion
without doing discretization, linearization, or perturbation.

In many �elds, the FRPSM introduced by some authors, viz. Lane-Emden Equations[9], Boussinesq-
Burgers Equations[10], Di�usion Equations[11], Burger Types Equations[12], Multipantograph Di�erential
Equations[13], Whitham-Broer-Kaup Equations[13], Fredholm Integral Equations[16]. Reaction Di�usion
Model is one of the applications discussed by modeling fractal-fractional partial di�erential equations and oil
pollution[17] are another real-life problem studied by the analytic solution of di�usion equations. Recursion
relation in this method is not important and coe�cients comparison of the corresponding terms do not need
over the classical power series method.

FRPSM was introduced by Alquran[18] in 2015. He has solved the equation of the drainage problem in frac-
tional form. In addition, in 2015, Wang and Chen[19] have obtained the solution of Whitham-Broer-Kaup
equations using FRPSM. As the solution obtained using FRPSM was accurate, convergent and does not
need outsize computer memory compared to other numerical methods like Jacobi elliptic function expan-
sion method[20], spectral collocation method[21], Petrov-Galerkin method[22], some iterative methods[23],
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Bernstein basis polynomials[24], Laplace Adomian Decomposition Method[25], Haar wavelet collocation
method[26], etc. due to that reason, several researchers have gained interest in it. Thereafter, Khalil et
al.[27] in 2021 have studied long-wave equations, Modanli et al.[13] in 2020 have studied pseudo hyperbolic
di�erential equation, Kumar et al.[28] in 2021 have discussed the bi-Hamiltonian Boussinesq System.

To stimulate more interest in the subject and to show its utility, the present article focuses on the new
application of FRPSM and comparison with ADM. The article comprises di�erent sections. Besides the
�rst section, the upcoming sections are devoted to the formulation of FRPSM for the KdV equation and its
solution. Furthermore, we have also compared the solution with the exact solution and demonstrated the
results using graphs and tables. In conclusion, we have discussed the geometrical interpretation and accuracy
of the solution.

2. Preliminaries

De�nition 2.1. Riemann-Liouville Fractional Integral[29]
The Riemann-Liouville version of fractional integral operator of order α is given by

aD
−α
ξ ψ(ξ) =

1

Γ(α)

∫ ξ

a
(ξ − τ)α−1ϕ(τ)dτ, n− 1 < α ≤ n. (2)

De�nition 2.2. Caputo Fractional Derivative[30]
The Caputo time-fractional derivative of order α > 0 of ψ(ξ, τ) is de�ned as

Dα
τ [ψ(ξ, τ)] =

{
1

Γ(η−α)
∫ τ
o (τ − t)η−a−1 ∂ηψ(ξ,t)

∂tη dt, η − 1 < α < η
∂ηψ(ξ,t)
∂tη , α = η ∈ N.

(3)

De�nition 2.3. Fractional Residual Power Series[31]
A fractional residual power series expansion about τ = τ0 is expressed in the form

∞∑
ν=0

cν(τ − τ0)
να = c0 + c1(τ − τ0)

α + c2(τ − τ0)
2α + ..., 0 ≤ η − 1 < α ≤ η, τ ≥ τ0. (4)

Theorem 2.4. [31] Let the FRPS representation at τ = τ0 for the function ψ of the form

ψ(τ) =

∞∑
ν=0

cν(τ − τ0)
να, τ0 ≤ τ < τ0 +R (5)

where R is the radius of convergence.
If Dναψ(τ), ν = 0, 1, 2, 3, ... are continuous on (τ0, τ0 + R) then the coe�cient cν are given by the formula

cν = Dναψ(τ0)
Γ(1+να) , ν = 0, 1, 2, ... where Dνα = Dα. Dα. Da... Da(ν times).

Theorem 2.5. [31] Let the FRPS representation at τ = τ0 for the function ψ is expressed by the form

ψ(ξ, τ) =

∞∑
ν=0

ϕν(ξ)(τ − τ0)
να,where ξ ∈ R , τ0 ≤ τ < τ0 +R, 0 ≤ ν − 1 < α ≤ ν. (6)

If Dναψ(ξ, τ), ν = 0, 1, 2, 3, ... are continuous on R× (τ0, τ0+R) then the coe�cient cν are given by ϕν(ξ) =
Dναψ(ξ,τ0)
Γ(1+να) , ν = 0, 1, 2, ... where

Dνα = Dα ·Dα ·Da · · · · ·Da (ν times).
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Thus, the generalized Taylor series formula for fractional residual power series at τ = τ0 can be expressed as

ψ(ξ, τ) =
∞∑
ν=0

Dναψ(ξ, τ0)

Γ(1 + να)
(τ − τ0)

να, (7)

where ξ ∈ R , τ0 ≤ τ < τ0 +R, 0 ≤ ν − 1 < α ≤ ν.

If α = 1, then classical Taylor series is obtained as

ψ(ξ, τ) =
∞∑
ν=0

Dνψ(ξ, τ0)

Γ(1 + ν)
(τ − τ0)

ν ,where ξ ∈ R , τ0 ≤ τ < τ0 +R. (8)

Corollary 2.6. Suppose that ψ(ξ, ζ, τ) has a multiple fractional residual power series representation at τ = τ0
of the form

ψ(ξ, ζ, τ) =

∞∑
ν=0

ϕν(ξ, ζ)(τ − τ0)
να, (9)

where (ξ, ζ) ∈ R× R , τ0 ≤ τ < τ0 +R, 0 ≤ ν − 1 < α ≤ ν.

If Dναψ(ξ, ζ, τ), ν = 0, 1, 2, 3, ...are continuous on R× R× (τ0, τ0 +R) then the coe�cient cν are given by

ϕν(ξ, ζ) =
Dναψ(ξ, ζ, τ0)

Γ(1 + να)
, ν = 0, 1, 2, ...

3. Analysis of Fractional Residual Power Series Method

To illustrate the essential concept of FRPSM, the generalized fractional di�erential equation of non-linear
form is considered as follows:

Dα
τ [ψ(ξ, τ)] = R(ψ) +N(ψ), 0 ≤ ν − 1 < α ≤ ν. (10)

where R(ψ) and N(ψ) are linear and non-linear terms respectively, subject to initial conditions,

ψ(ξ, 0) = ϕ0(ξ) = ϕ(ξ) and D(η−1)α
τ [u(ξ, 0)] = ϕη−1(ξ). (11)

The FRPSM presents the solution for (10) at t = 0,

ψ(ξ, τ) =
∞∑
η=0

ϕη(ξ)
τηα

Γ(1 + ηα)
, where ξ ∈ R , 0 ≤ τ < R, 0 < α ≤ 1. (12)

Let ψκ(ξ, τ) denote as κ
th− truncated series

ψκ(ξ, τ) =

κ∑
η=0

ϕη(ξ)
τηα

Γ(1 + ηα)
, (13)

where ξ ∈ R , 0 ≤ τ < R, 0 < α ≤ 1, κ = 1, 2, 3, ....

The solution of FDE (10) namely ψ(ξ, τ) satis�es the initial conditions as given in (11). Moreover, applying
τ = 0 in equation (12), we obtain

ψ0(ξ, 0) = ψ(ξ, 0) = ϕ0(ξ) = ϕ(ξ). (14)
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Using series (13) for κ = 1, we have

ψ1(ξ, τ) = ϕ0(ξ) + ϕ1(ξ)
τα

Γ(1 + α)
, (15)

and in general

ψκ(ξ, τ) = ϕ0(ξ) + ϕ1(ξ)
τα

Γ(1 + α)
+

κ∑
η=2

ϕη(ξ)
τηα

Γ(1 + ηα)
, (16)

where κ = 2, 3, 4, ...
Subsequently, using FRPSM we can evaluate ϕη(ξ), η = 1, 2, 3, ..., κ in the equation (16).
Now, we de�ne the residual function to generalized FDE (10) as,

Res ψ(ξ, τ) = Dα
τ [ψ(ξ, τ)]−R(ψ)−N(ψ). (17)

Thus, κth− Residual function is

Res ψκ(ξ, τ) = Dα
τ [ψκ(ξ, τ)]−R(ψκ)−N(ψκ). (18)

As mentioned in El-Ajouh et al.[31], we can easily see that

lim
κ→∞

Res ψκ(ξ, τ) = Res ψ(ξ, τ) = 0.

Dηα
τ [Resψ(ξ, τ)] = 0. (19)

In Caputo sense, fractional di�erentiation is

Dηα
τ [Res ψ(ξ, 0)] = Dηα

τ [Res ψκ(ξ, 0)] = 0; η = 0, 1, 2, ..., κ. (20)

To evaluate ϕi(ξ) where i = 1, 2, ..., we calculate for κ = 1, 2, ..., in (16) then replace it in (18), taking

D
(κ−1)α
τ on both the sides, we have ϕi(ξ) where i = 1, 2, ..., using

D(κ−1)α
τ [Res ψκ(ξ, 0)] = 0, κ = 1, 2, 3, ... (21)

Substitution of ϕi(ξ) , i = 1, 2, ..., in (12) provide us with the series solution of (10).

3.1. Convergence Analysis of FRPSM

Theorem 3.1. [31] For any
∑∞

ν=0 ϕν(ξ)τ
να, τ ≥ τ0, there exist three possibilities

(i) The series converges only when τ = 0,

(ii) The series converges for each τ ≥ 0,

(iii) There is a positive real number R such that the series converges whenever 0 ≤ τ < R and diverges
whenever τ > R.

The number R in case-3 is Radius of Convergence of the fractional residual power series (FRPS). By con-
vention R = 0 in case-1 and R→ ∞ in case-2.

Theorem 3.2. [31] The power series
∑∞

ν=0 ϕν(ξ)τ
να,−∞ < τ < ∞ has radius of convergence R, if and

only if the FRPS,
∑∞

ν=0 ϕν(ξ)τ
να, τ ≥ 0 has radius of convergence R1/α. Here, radius of convergence R =

lim
ν→∞

∣∣∣ ϕν
ϕν+1

∣∣∣ .
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4. Solution of Fractional KdV Equation

To demonstrate the one-dimensional non-linear homogeneous time fractional KdV (Korteweg-de Vries) equa-
tion, we used the concept of FRPSM, let us examine the question.

Dα
τ [ψ(ξ, τ)] + 6ψψξ + ψξξξ = 0, (22)

with initial conditions,

ψ(ξ, 0) =
1

2
sech2

(x
2

)
. (23)

The exact solution[3] of KdV equation is given by,

ψ(ξ, τ) =
1

2
sech2

(
τ + ξ

2

)
. (24)

Explicating the residual function for (22) as

Res ψ(ξ, τ) = Dα
τ ψ(ξ, τ) + 6ψψξ + ψξξξ. (25)

Thus, κth− Residual function Res ψκ(ξ, τ),

Res ψκ(ξ, τ) = Dα
τ ψκ(ξ, τ) + 6ψκψκξ + ψκξξξ. (26)

For κ = 1, equations (16) and (26) yields,

Res ψ1(ξ, τ) =ϕ1 + 6ϕϕξ + ϕξξξ + (6ϕϕ1ξ + 6ϕ1ϕξ + ϕ1ξξξ)
τα

Γ(1 + α)

+ 6ϕ1ϕ1ξ
τ2α

Γ(1 + α)2
. (27)

Using initial condition (21), we have

ϕ1(ξ) =
1

2
tanh

(
ξ

2

)
sech2

(
ξ

2

)
. (28)

Similarly, for κ = 2 we have,
Res ψ2(ξ, τ) = Dα

τ ψ2 + 6ψ2ψ2ξ + ψ2ξξξ. (29)

Now, from (16) at κ = 2,

ψ2(ξ, τ) = ϕ(ξ) + ϕ1(ξ)
τα

Γ(1 + α)
+ ϕ2(ξ)

τ2α

Γ(1 + 2α)
. (30)

Residual function Res ψ2(ξ, τ) is given by

Res ψ2(ξ, τ) =ϕ1 + 6ϕϕξ + ϕξξξ + (ϕ2 + 6ϕϕ1ξ + 6ϕ1ϕξ + ϕ1ξξξ)
τα

Γ(1 + α)

+ (6ϕϕ2ξ + 6ϕ2ϕξ + ϕ2ξξξ)
τ2α

Γ(1 + 2α)
+ 6ϕ1ϕ1ξ

τ2α

Γ(1 + α)2

+ (6ϕ1ϕ2ξ + 6ϕ2ϕ1ξ)
τ3α

Γ(1 + α)(1 + 2α)
+ ϕ2ϕ2ξ

τ4α

Γ(1 + 2α)2
. (31)

Taking Dα
τ on both side and calculating the equation Dα

τ [Resψ2(ξ, 0)] = 0,

ϕ2 = −6ϕϕ1ξ − 6ϕ1ϕξ − ϕ1ξξξ. (32)
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with,

ϕ2(ξ) =
1

4
sech2

(
ξ

2

)(
2− 3sech2

(
ξ

2

))
. (33)

And, for κ = 3,
Res [ψ3(ξ, τ)] = Dα

τ ψ3 + 6ψ3ψ3ξ + ψ3ξξξ. (34)

Now, from (16) at κ = 3,

ψ3(ξ, τ) = ϕ(ξ) + ϕ1(ξ)
τα

Γ(1 + α)
+ ϕ2(ξ)

τ2α

Γ(1 + 2α)
+ ϕ3(ξ)

τ3α

Γ(1 + 3α)
. (35)

Residual function Res ψ3(ξ, τ) is given by

Res ψ3(ξ, τ) =ϕ1 + 6ϕϕξ + ϕξξξ + (ϕ2 + 6ϕϕ1ξ + 6ϕ1ϕξ + ϕ1ξξξ)
τα

Γ(1 + α)

+ (ϕ3 + 6ϕϕ2ξ + 6ϕ2ϕξ + ϕ2ξξξ)
τ2α

Γ(1 + 2α)

+ 6ϕ1ϕ1ξ
τ2α

Γ(1 + α)2
+ (6ϕϕ3ξ + 6ϕ3ϕξ + ϕ3ξξξ)

τ3α

Γ(1 + 3α)

+ (6ϕ1ϕ2ξ + 6ϕ2ϕ1ξ)
τ3α

Γ(1 + α)(1 + 2α)
+ 6ϕ2ϕ2ξ

τ4α

Γ(1 + 2α)2

+ (6ϕ3ϕ1ξ + 6ϕ1ϕ3ξ)
τ4α

Γ(1 + α)(1 + 3α)

+ (6ϕ2ϕ3ξ + 6ϕ3ϕ2ξ)
τ5α

Γ(1 + 2α)(1 + 3α)
+ 6ϕ3ϕ3ξ

τ6α

Γ(1 + 3α)2
. (36)

Taking D2α
τ on both side and calculating the equation D2α

τ [Resψ3(ξ, 0)] = 0, then we get

ϕ3 = −6ϕϕ2ξ − 6ϕ2ϕξ − ϕ2ξξξ − 6ϕ1ϕ1ξ. (37)

with,

ϕ3(ξ) =
1

2
tanh

(
ξ

2

)
sech2

(
ξ

2

)(
1− 3sech2

(
ξ

2

))
. (38)

Similarly, for κ = 4 we have,

ϕ4 = −6ϕϕ3ξ − 18ϕ2ϕ1ξ − ϕ3ξξξ − 18ϕ1ϕ2ξ − 6ϕ3ϕξ. (39)

with,

ϕ4(ξ) =
1

2
sech2

(
ξ

2

)
− 15

4
sech4

(
ξ

2

)
+

15

4
sech6

(
ξ

2

)
. (40)

Subsequently, values of ϕ5, ϕ6, ...can be obtained,

Now, substituting values of ϕ, ϕ1, ϕ2, ... in equation (16), ϕ(ξ, τ) is expressed in terms of series as,

ϕ(ξ, τ) =
1

2
sech2

(
ξ

2

)
+

1

2
tanh

(
ξ

2

)
sech2

(
ξ

2

)
τα

Γ(1 + α)

+
1

4
sech2

(
ξ

2

)(
2− 3sech2

(
ξ

2

))
τ2α

Γ(1 + 2α)

+
1

2
tanh

(
ξ

2

)
sech2

(
ξ

2

)(
1− 3sech2

(
ξ

2

))
τ3α

Γ(1 + 3α)

+

(
1

2
sech2

(
ξ

2

)
− 15

4
sech4

(
ξ

2

)
+

15

4
sech6

(
ξ

2

))
τ4α

Γ(1 + 4α)
+ ... (41)

By considering the di�erent values of α ∈ (0, 1], corresponding values of ψ(ξ, τ) are discussed in Table (1).
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5. Results

The present paper shows the approximate analytical solution obtained by using FRPSM for the time-
fractional KdV equation. Comparison of obtained semi-analytical solution from FRPSM with exact solution
using conventional method and ADM is demonstrated in Table-1 to Table-5. The behaviour of di�erent
fractional order α is shown in Figure-1. The dynamic solution of the KdV equation using di�erent fractional
orders i.e α = 0.2, 0.4, 0.6, 0.8 along with α = 1 and exact solution are graphically shown in Figure(2a to
2f). Further, Table-6 represents di�erent values of ψ(ξ, τ) for ξ = 2 and α ∈ (0, 1]. Further, the hereditary
properties for di�erent values of x and t with di�erent fractional order α can be used for further study. The
results so obtained clearly states the convergence of the method.

6. Conclusion

The present paper exhibits the solution of the well-known KdV equation in fractional order. We proposed
the semi-analytic solution using the fractional residual power series method. FRPSM can be employed to
various non-linear and linear FPDE. The results discussed in this article demonstrate good accuracy and are
going to be useful to several complicated non-linear physical problems. The calculations of this technique
are straightforward. In addition, we found improved accuracy of the proposed method by calculating the
absolute error (Tables - 1 to 5) and compared it to the other iterative method. These errors turned out
to be very small for both exact solutions and earlier approximate solutions. Figure (2a to 2f) shows that
while changing fractional order α, three-dimensional graph increases the intelligibility of dynamic behaviour
of the system. The method is also capable of solving the KdV type equation with other types of boundary
conditions and initial conditions. Consequently, this method is a semi-analytic technique with high accuracy,
exponential convergence rates, and is easy to use for di�erent boundary conditions and can be useful to solve
the similar type of space time-fractional di�erential equations.
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Table 1: The Absolute Error in Solution of KdV Equation by RPSM Method and ADM Method[32] when
ξ = −20 and α→ 1.

τ |ψexact − ψrpsm| |ψexact − ψadm|
0.1 -8.25131E-10 3.73002E-09
0.2 -1.65416E-09 3.37506E-09
0.3 -2.49062E-09 3.05388E-09
0.4 -3.33775E-09 2.76327E-09
0.5 -4.19844E-09 2.50031E-09
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Table 2: When ξ = −10 and α→ 1.

τ |ψexact − ψrpsm| |ψexact − ψadm|
0.1 -2.86113E-05 8.21524E-05
0.2 -3.64285E-05 7.43351E-05
0.3 -5.48495E-05 6.72617E-05
0.4 -7.35051E-05 6.08613E-05
0.5 -9.24593E-05 5.50699E-05

Table 3: When ξ = 0 and α→ 1.

τ |ψexact − ψrpsm| |ψexact − ψadm|
0.1 -2.90000E-09 2.08040E-06
0.2 -1.87933E-07 3.31454E-05
0.3 -2.12660E-06 1.66623E-04
0.4 -1.18419E-05 5.21491E-04
0.5 -4.46589E-05 1.25742E-03

Table 4: When ξ = 10 and α→ 1.

τ |ψexact − ψrpsm| |ψexact − ψadm|
0.1 1.59158E-05 1.00339E-04
0.2 3.64406E-05 1.10891E-04
0.3 5.49109E-05 1.22552E-04
0.4 7.36995E-05 1.35439E-04
0.5 9.29355E-05 1.49681E-04

Table 5: When ξ = 20 and α→ 1.

τ |ψexact − ψrpsm| |ψexact − ψadm|
0.1 8.25166E-10 4.55585E-09
0.2 1.65471E-09 5.03500E-09
0.3 2.49341E-09 5.56453E-09
0.4 3.34659E-09 6.14976E-09
0.5 4.22009E-09 6.79654E-09

Table 6: Value of ψ(ξ, τ) with di�erent fractional order α when ξ = 2.

τ α = 0.2 α = 0.4 α = 0.6 α = 0.8 α = 1

0.1 0.354750978 0.29496648 0.259395686 0.238566145 0.226368188
0.2 0.382232355 0.327692525 0.28835476 0.261507702 0.243526238
0.3 0.400996543 0.353185341 0.313530228 0.283441821 0.261461322
0.4 0.415702913 0.375006055 0.336761221 0.305029944 0.280173439
0.5 0.427988593 0.394504163 0.358769892 0.326536438 0.299662589
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Figure 1: Comparison of fractional KdV equation with di�erent value of α with exact solution.
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(a) α = 0.2 (b) α = 0.4

(c) α = 0.6 (d) α = 0.8

(e) α = 1 (f) Exact solution

Figure 2: Solution of KdV equation by FRPSM with di�erent order α.
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